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Abstract

This paper studies the efficacy of discretionary stabilization policies, when household heterogene-

ity, business cycles and long-run growth interact. Consistent with empirical evidence, we develop

a unified heterogeneous agent New Keynesian growth framework in which: (i) growth arises from

innovative investment, (ii) a demand externality shapes economic activity, and (iii) household het-

erogeneity acts on those channels through the joint distribution of marginal propensities to consume

(MPCs) and marginal propensities to invest (MPIs). First, we analytically show that an income re-

distribution channel from high-MPI "entrepreneurs" to high-MPC households increases technology

growth if the stabilizer is sufficiently persistent. Second, while the aggregate demand externality

pushes toward progressive stabilizers, the endogenous growth channel pushes toward regressive

stabilizers. When policymakers do not balance among both extremes, a short- versus long-run

stabilization tradeoff arises. We quantitatively investigate this tension based on temporary unem-

ployment insurance extensions during the U.S. Great Recession. The government maximizes the

short-run output multiplier at a value of 1.2 by financing the policy with progressive income taxes.

This is, however, at the cost of a long-run output loss with a multiplier of -0.2. Overall, our analysis

provides a rationale to finance stabilizers by shifting the tax incidence on middle-class households.
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1 Introduction

Economic downturns are accompanied by a set of recurrent empirical facts. At the micro level,

low-income households face higher unemployment risk (Storesletten et al., 2004) and earnings

losses (Guvenen et al., 2017; Heathcote et al., 2020), resulting in higher income inequality (Coibion

et al., 2017; Ampudia et al., 2018). At the macro level, aggregate consumption (Patterson, 2022)

and innovative investment (Barlevy, 2007) – such as research and development (R&D) expendi-

tures – strongly contract and may cast long shadows on economic growth.1 To stabilize aggregate

fluctuations and reduce individual hardship, a set of discretionary monetary, fiscal, and social

insurance policies are frequently used.2 This type of discretionary "stabilizers" share a common

feature; they redistribute income across households who experience not only a heterogeneous ex-

posure to economic downturns, but also differ in their consumption and investment behavior.

How does this redistribution channel affect the efficacy of discretionary stabilization policies? Are

there circumstances under which such policies stabilize short-run fluctuations by expanding ag-

gregate demand but harm, at the same time, the long-run recovery from economic downturns by

lowering innovative investment and technology growth?

To make progress on these questions, this paper puts forward a theory on discretionary macroe-

conomic stabilization policies, in which household heterogeneity jointly interacts with business

cycle fluctuations and long-run technology growth. Consistent with empirical evidence, we de-

velop a unified heterogeneous agent New Keynesian growth framework (hereafter HANK-GS) that

synthesizes three main features. First, technology growth and potential output are determined

endogenously as the result of innovative investment. Second, the presence of nominal rigidities

generates a tight link between aggregate demand and economic activity, i.e., a temporary fall in ag-

gregate demand reduces firm profits, innovative investment, and consequently the long-run level

of output. Third, household heterogeneity drives aggregate demand and innovative investment

through the joint distribution of marginal propensities to consume (MPCs), marginal propensities

to invest (MPIs), and the household exposure to aggregate income.

Through the lens of this framework, we show that the efficacy of stabilization policies funda-

mentally changes relative to the conventional wisdom that either neglects household heterogene-

ity, nominal rigidities, or long-run effects on technology growth. While nominal rigitidies provide

through the aggregate demand channel a rationale for progressive stabilizers, the endogenous

growth channel provides a force toward regressive stabilizers. When policymakers do not bal-

1For a multitude of economic downturns, output does not revert to its prerecession trend level such that transitory
economic downturns permanently depress the long-run level of economic activity (Cerra and Saxena, 2008; Blanchard
et al., 2015; Fatás and Summers, 2018). The Great Recession, for instance, left a permanent output loss of 15% in the US.

2During the Great Recession, for instance, monetary authorities of many countries massively lowered nominal
interest rates, and even hit negative territories for a prolonged time. The U.S. government implemented a large fiscal
stimulus on, among others, unemployment insurance, supplemental nutrition assistance programs, and Medicaid.
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ance among both extremes, a discretionary policy engenders a short- versus long-run stabilization

tradeoff, i.e., it expands output but harms technology growth and, hence, slows down the long-run

recovery from recessions. We illustrate this tension by analyzing, as our leading example, one of

the biggest stabilization policies that was implemented during the Great Recession: temporary ex-

tensions in the unemployment insurance (UI) duration.3 A policymaker maximizes the short-run

output multiplier at a value of 1.2 after one year by financing the UI extensions through progres-

sive income taxes, which is, however, at the cost of a long-run output loss with a multiplier of

−0.2. Overall, our analysis provides a rationale to finance discretionary stabilizers by additional

debt issuance and/or by shifting the additional tax incidence on middle-class households. We

develop our results in two steps. First, we expose the tradeoffs based on a tractable setup. Second,

we quantify aggregate effects based on a rich quantitative setup of the US economy.

The backbone of the theoretical framework builds upon a tractable version of the heteroge-

neous agent New Keynesian economy (HANK) that we merge with endogenous growth (GS).

A continuum of households consume, supply labor, and face idiosyncratic shocks that generate

a precautionary self-insurance motive. Due to limited asset market participation, only a frac-

tion of households are unconstrained and participate in financial markets to save and self-insure

themselves against income risk. Those households are also the owners of innovative firms and

execute managerial control over investment decisions. The remaining households are constrained

hand-to-mouth with high MPCs, who consume their disposable income. Nominal wage contracts

generate an aggregate demand externality which drives fluctuations in economic activity. On the

firm side, our framework relies on an endogenous model of vertical innovation. Firms improve

the quality of their goods through innovative investment decisions that are closely linked to the

cyclicality of profits. As reward, they are compensated by monopoly rents which, in turn, increase

stockholders’ dividend income and, thus, inequality. Finally, the government redistributes income

across both household types, while a monetary authority sets the nominal interest rate.

The stationary balanced growth path equilibrium of this economy admits a four-equation rep-

resentation that comprises: (i) an IS equation that captures aggregate demand; (ii) an endogenous

growth equation that embodies firms’ innovation decisions; (iii) a New Keynesian wage Phillips

curve; and (iv) a Taylor-type monetary policy rule. The key novelty of this representation lies

in the unified treatment of the short- and long-run propagation of stabilizers, while preserving

comparability with existing models studying inequality, business cycles and growth in isolation.

Our first main theoretical result concerns the income redistribution channel of discretionary stabi-

3In the US, the duration of unemployment benefits was extended in every major recession since 1958 that was
characterized by high unemployment. During the Great Recession, unemployment benefit extensions reached up to 99
weeks. As such, unemployment assistance amounted to roughly 25% of the total fiscal stimulus according to the CBO.
Such episodes are often accompanied by a rise in the progressivity of income taxation, i.e., income tax progressivity
approximately increased by 5–10% in the US during the Great Recession (Bayer et al., 2020).
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lization policies, leaving aside potential financing distortions. We show that the effects of tempo-

rary variations in income inequality on technology growth depend on three statistics: the income

exposure of high-MPI households, that of high-MPC households, and the persistence of the stabi-

lization policy. On the one hand, if a stabilization policy redistributes income away from high-MPI

households, expected consumption growth of investors decreases, which raises investment costs

in terms of foregone consumption and reduces innovative investment (i.e., a cost of funds effect).

On the other hand, if a stabilization policy redistributes income toward high-MPC households,

aggregate demand overproportionally expands such that firm profits and innovative investment

increase (i.e., a market size effect). When both forces move in opposite directions, the persistence of

the discretionary policy determines the sign of the overall effect. A higher persistence increases

the weight on the market size effect as aggregate demand expands for a prolonged amount of

time, whereas it reduces the weight on the cost of funds effect as expected investor consumption

growth fluctuates less. While a countercyclical income redistribution channel generically leads to

greater output stabilization, it, thus, reduces (resp. increases) innovative investment under a low

(resp. high) persistent policy. If the stabilization policy is persistent enough, there arises a com-

plementarity between cyclical inequality, innovative investment and output, suggesting long-run

scars from inequality. A stabilizer that reduces inequality increases innovative investment, which,

in turn, expands aggregate demand and output such that income inequality falls even more.

We summarize these forces in an insightful diagram, which is close in spirit to a sufficient

statistics approach. It decomposes the effects of the income redistribution channel on the short-

and long-run level of output into the cost of funds and the market size effect. This diagram is

a powerful device to organize substantial parts of the heterogeneous agent literature in terms

of their inequality-investment-efficiency relationship. The previous case in which countercyclical

income inequality redistributes income from high-MPC to high-MPI households, for instance, falls

into a particular region of the diagram. Despite the parsimony of our analytical framework, we

argue that richer quantitative models admit a similar representation with model-specific sign and

weights on the cost of fund and market size effects. These insights carry over to a larger class of

models with other forms of investment, such as physical capital or skill accumulation.

Our second main theoretical result concerns the financing channel of discretionary stabilization

policies. We highlight the role of progressive income taxes that may generate additional invest-

ment distortions. Depending on the strength of the short-run stabilization in aggregate demand,

the efficacy of stabilization policies can be classified into three regimes, in which: (i) both output

and technology growth increase; (ii) output increases but technology growth decreases; and, (iii)

both output and technology growth decrease. These regimes arise as a heterogeneous tax inci-

dence moves the aggregate demand and the innovative investment channel into opposite direc-

tions. Absent both channels, progressive income redistribution reduces inequality but is irrelevant
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for output, which is purely supply determined. In the presence of an aggregate demand external-

ity, progressive income redistribution expands output, as it redistributes income to high-MPC

households. This is in stark contrast to an environment with endogenous growth. Without aggre-

gate demand externality, progressive income redistribution is contractionary for short-run output

and technology growth, as it distorts innovation decisions of high-MPI households beyond the

cost of funds effect. As a result, if the aggregate demand expansion is sufficiently strong (resp.

weak), then output and innovative investment increase (resp. contract). Importantly, for moder-

ate aggregate demand expansions, output increases in the short-run while innovative investment

falls. As a result, the policy engenders a long-run output loss after a certain time horizon.

To assess the overall efficacy of a discretionary stabilizer based on the income redistribution

and the financing channel, it is, thus, important to put a realistic quantitative structure on aggre-

gate demand, innovative investment, and the policy itself. We therefore build a full-blown incom-

plete markets HANK-GS framework that extends the analytical setup along three dimensions.

First, we incorporate multiple layers of household heterogeneity through discount factors, labor

productivity, unemployment risk, and entrepreneurial talent. Households that suffer from bad

labor market outcomes end up at the bottom of the wealth distribution and exhibit, on average, a

high MPC. Households with entrepreneurial talent exert costly effort to accumulate innovations.

Within this group, the most successful entrepreneurs self-select at the top of the income distribu-

tion, which generates a positive cross-sectional correlation between MPIs and income. Second,

households face idiosyncratic earnings risk on the intensive margin through hours worked and

on the extensive margin through the employment status. Both adjustment margins are correlated

with worker’s ability, which generates countercyclical income inequality. Third, the government

partially insures households against income risk through a rich set of policies comprising safety-

net programs, unemployment insurance benefits, and progressive income taxes.

We use household panel data from the Current Population Survey (CPS) to discipline the

distributional burden of economic downturns and their demand repercussions. We pin down

nonuniform adjustments in hours worked and unemployment risk across different wage bins such

that the model replicates well the joint distribution of MPCs and earnings exposures. Moreover,

we target the elasticity of innovative investment to corporate income taxes as estimated by Ak-

cigit et al. (2022). They provide extensive empirical evidence on the responsiveness of innovative

activities. The model generates, thus, a reasonable average MPI regarding innovative investment.

Moreover, the presence of a small fraction of entrepreneurs who experience high returns to inno-

vative investment brings about the empirically observed concentration of income and wealth.

To quantitatively highlight the pure income redistribution channel, we consider an unantici-

pated monetary policy tightening, which substantially reduces innovative investment. The reduc-

tion in technology growth at impact is, perhaps surprisingly, around 50% smaller in comparison to
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a representative agent economy. This is the case because the cost-of-fund effect is less pronounced

in heterogeneous agent economies, i.e., entrepreneurs are relatively richer and, thus, less sensitive

to income shocks. We also find that the persistence of monetary policy has non-linear effects on

innovative investment. Countercyclical income inequality leads to a sizeable fall in short- and

long-run output above a quarterly persistence value of 0.7. As a result, there are long-run scars

from cyclical inequality but, at the same time, long-run gains from household heterogeneity per se.

To jointly study the income redistribution and the financing channel, we evaluate the tempo-

rary extension in the UI benefit duration. The efficacy of this policy in stabilizing the US econ-

omy heavily depends on its financing. Debt financing and lump-sum taxes both generate large

short-run and moderate long-run output gains. Under both financing instruments, the aggre-

gate demand expansion is large and increases innovative investment. In contrast, government

spending cuts crowd out consumption and lead to mild short- and long-run effects. Progressive

income taxation stabilizes short-run output most effectively, which is at the cost of a large long-

run loss. Importantly, the ordering of these financing instruments is reversed when abstracting

from either nominal rigidities or endogenous growth. Progressive income taxation becomes the

most powerful instrument to stabilize output absent endogenous growth, while it turns out to

be the least effective instrument absent nominal rigidities. Finally, we zoom into the progressive

income tax results and take a detailed look at the effects of a heterogeneous, non-monotonous tax

incidence. When gradually shifting the tax incidence from low-income to middle-income house-

holds, short-run output and technology growth increase. Instead, when high-incomes are rela-

tively more taxed, short-run output still expands but technology growth falls. Our results, thus,

provide a rationale for higher taxes on middle-class households to stabilize economic downturns.

The UI extension engenders in this case both sizable short- and long-run output gains.

Related literature This paper is part of a vast literature studying the interaction between house-

hold heterogeneity and macroeconomic outcomes. As our main contribution, we provide a novel

perspective on the effectiveness of discretionary stabilizer when household heterogeneity, busi-

ness cycles and long-run growth interact. We relate foremost to four strands of the literature.

First, our paper relates to the analytical and quantitative HANK literature. On the analytical

side, we relate to Bilbiie (2008, 2020, 2021), Debortoli and Galí (2018), Acharya and Dogra (2020),

Broer et al. (2020), Ravn and Sterk (2020), and Cantore and Freund (2021). We propose an alter-

native tractable HANK representation based on a general earnings incidence specification in an

environment with limited asset markets participation and sticky wages, and thus conceptually

follow Werning (2015).4 On the quantitative side, we relate to McKay et al. (2016), Kaplan et al.

4We follow a recent echo advocating the use of sticky wages over sticky prices (Nekarda and Ramey, 2020), applied
in quantitative HANK models among others by Hagedorn et al. (2019a), Hagedorn et al. (2019b), Auclert et al. (2021),
or Dávila and Schaab (2022) and in tractable ones by Colciago (2011), Ascari et al. (2017), and Walsh (2017).
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(2018), Auclert et al. (2018) Bayer et al. (2019), Auclert (2019), Auclert and Rognlie (2020), and

Bayer et al. (2020). We contribute to this literature by synthesizing HANK with a vertical innova-

tion model of endogenous growth. As the latter acts through an investment channel, our paper

shares similarities with Galí et al. (2007) and Bilbiie et al. (2022) highlighting the propagation of

a consumption-investment accelerator on consumption (Samuelson, 1939). Relative to them, we

provide a decomposition of the effects of cyclical inequality on investment (Luetticke, 2021; Kekre

and Lenel, 2022) and link it to the persistence of redistributionary stabilizers.

Second, our paper relates to an older, but rapidly growing, literature that jointly studies busi-

ness cycles and endogenous growth (cf. Romer (1990), Grossman and Helpman (1991), Aghion

and Howitt (1992)). Stadler (1990), Fatás (2000), and Comin and Gertler (2006) are early contribu-

tions, while Benigno and Fornaro (2018), Moran and Queralto (2018), Anzoategui et al. (2019), and

Garga and Singh (2021) advanced those models toward a Keynesian growth economy.5 We enrich

this strand by inequality and a heterogeneous income exposure during economic downturns that

affects aggregate outcomes through the joint distribution of MPCs and MPIs.

Third, the HANK-GS framework is empirically consistent with a growing literature that ar-

gues how transitory economic downturns permanently depress the level of economic activity, i.e.,

generate hysteresis or scarring. Fatás (2000) and Blanchard et al. (2015) show that business cycles

cast long shadows, while Cerra and Saxena (2008) find that output drops are particularly persis-

tent in the aftermath of financial and political crises. Fatás and Summers (2018) and Cerra et al.

(2021) provide a detailed overview on this strand. Recently, structural vector autoregression mod-

els have been used to identify the long-lasting effects of transitory stabilization policies. Moran

and Queralto (2018), Jordá et al. (2020) and Garga and Singh (2021) show that loose monetary

policy has a positive and long-lived effect on output, R&D expenditures and total factor produc-

tivity. Antolin-Diaz and Surico (2022) and Ilzetzki (2022) document such effects for government

spending increases, while Cloyne et al. (2022) obtains similar patterns for corporate tax cuts.6

Fourth, by analyzing the efficacy of fiscal stabilization policies in heterogeneous agent incom-

plete markets frameworks with nominal rigidities, our paper is closely related to McKay and Reis

(2016), McKay and Reis (2021), Kekre (2022) and Ferriere and Navarro (2022). While the former

two papers highlight the contribution of the ex-ante level of automatic stabilizers to the US busi-

ness cycle, the latter two focus on the effects of discretionary stabilizers. Kekre (2022) quantita-

tively shows that temporary UI extensions raised output and lowered unemployment during the

5Bianchi et al. (2019), Queralto (2020), Fornaro and Wolf (2020, 2021), Cozzi et al. (2021), Licandro and Vinci (2021)
and Queralto (2022) are further important contributions in this strand.

6Related, Furlanetto et al. (2021) identify demand shocks that have permanent effects on output and show that
they are quantitatively relevant in driving the US business cycle and disproportionally affecting the least productive
workers. Similarly, Maffei-Faccioli (2021) documents that demand-side factors explain large parts of the slow-down
in productivity in the US over the past two decades. Bertolotti et al. (2022) suggest that complementary demand and
supply factors led to a downward quality adjustment in durable-goods purchases during the Great Recession. Ignaszak
and Sedláček (2021) confirm those findings based on an endogenous growth model calibrated to US census firm data.
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Great Recession, when they are financed by taxing employed households. Ferriere and Navarro

(2022) empirically and quantitatively show that U.S. fiscal multipliers are larger when they are

financed by a higher degree of income tax progressivity. Instead, our paper points toward an

ambivalent role of progressive stabilization policies: while they improve the short-run recovery

from recessions, they are harmful for the long-run recovery by worsening innovation incentives.

Our analysis is, thus, consistent with inconclusive empirical evidence on the effects of tax cuts on

economic growth (Stokey and Rebelo, 1995; Jaimovich and Rebelo, 2017; Jones, 2022).

Roadmap In section 2, we construct an analytical heterogeneous agent New Keynesian growth

economy in order to highlight the main theoretical tradeoffs and insights. In section 3, we set

out the quantitative environment and discuss the model calibration. Section 4 inspects properties

of the quantitative model. Section 5.1 studies the transmission of monetary policy, while section

5.2 analyzes UI generosity as macroeconomic stabilization policy. Section 6 concludes. We refer

analytical derivations, proofs, empirical analyses and computational details to the Appendix.

2 An Analytical HANK Growth Economy

This section analytically characterizes the short- and long-run propagation of macroeconomic sta-

bilization policies. For this purpose, we develop a "limited heterogeneity" setup to shed light on

the key mechanisms that are present in rich quantitative models, as the one in section 3. In this

economy, technology growth arises from innovative investment; aggregate demand shapes eco-

nomic activity due to nominal rigidities; household heterogeneity impacts aggregate consumption

and investment decisions; and the welfare state insures against individual hardship.

2.1 Environment

Time is discrete. The economy consists of infinitely-lived households, final and intermediary good

firms, a government and a central bank.

2.1.1 Households There is a unit mass i ∈ [0, 1] of households who discount future periods

at β ∈ (0, 1). Their instantaneous utility depends on consumption Ci,t and hours worked Li,t, i.e.,

U (Ci,t, Li,t) = ln Ci,t − ν
(Li,t)

1+φ

1+φ , where ν > 0 is a labor disutility shifter and φ−1 the Frisch elasticity.

There are two household groups. Saver households S participate in asset markets. Their port-

folio is composed of liquid bond holdings bS
i,t+1 with gross return Rt = 1 + it, and a share of

illiquid stocks ωS
i,t+1 ∈ [0, 1] of intermediary good firms that are priced at qt. Instead, hand-to-

mouth households H cannot participate in stock markets and only use liquid bond holdings bH
i,t+1

to insure against income risk. Households face a sequence of idiosyncratic shocks that induce

them to switch across saver and hand-to-mouth states. Saver households stay in state S with
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probability s ≡ P(St+1|St), while hand-to-mouth households remain in state H with probability

h ≡ P(Ht+1|Ht), such that 1 − s ≡ P(Ht+1|St) and 1 − h ≡ P(St+1|Ht). We restrict our focus to

stationary equilibria, where the mass of hand-to-mouth households is λ = 1−s
2−h−s .

States S and H can be viewed as separate islands. At the beginning of period t, households

on the same island pool resources and face an aggregate shock before they make equivalent con-

sumption and saving decisions. At the end of period t, they observe their future t + 1 state and

settle on the corresponding island while transferring only liquid bonds. BS
t+1 (resp. BH

t+1) denotes

total real bond holdings of all households on island S (resp. H) at the beginning of period t + 1,

after they have moved across islands. On the contrary, bS
t+1 (resp. bH

t+1) denotes per capita real bond

holdings at the end of period t before households change states. The laws of motion are

BS
t+1 = (1 − λ)sbS

t+1 + λ(1 − h)bH
t+1 , BH

t+1 = (1 − λ)(1 − s)bS
t+1 + λhbH

t+1 . (1)

Saver households work LS
t hours, specified below, at a real wage Wt

Pt
, where Pt is the aggregate

price level. They also receive a real after-tax dividend income Dt. The value of their program is

VS(BS
t , ωS

t ) = max
{CS

t , bS
t+1, ωS

t+1}
U (CS

t , LS
t ) + βEt

[
VS(BS

t+1, ωS
t+1) +

λ

1 − λ
VH(BH

t+1)

]
s.t. CS

t + bS
t+1 + qt

ωS
t+1

1 − λ
=

Wt

Pt
LS

t +
Rt−1

πt

BS
t

1 − λ
+ (qt + Dt)

ωS
t

1 − λ
, bS

t+1 ≥ 0 , and (1) ,

where πt ≡ Pt/Pt−1 is the gross inflation rate.7 Similarly, hand-to mouth households work LH
t

hours and receive real transfers TH
t from the government. The value of their program is

VH(BH
t ) = max

{CH
t , bH

t+1}
U (CH

t , LH
t ) + βEt

[
VH(BH

t+1) +
1 − λ

λ
VS(BS

t+1, ωS
t+1)

]
s.t. CH

t + bH
t+1 =

Wt

Pt
LH

t +
Rt−1

πt

BH
t

λ
+

TH
t
λ

, bH
t+1 ≥ 0 , and (1) .

We now specify the insurance scheme across agents that we select and solve for in equilibrium.

Assumption 1 (INSURANCE). (A1.a) there is perfect insurance among households being in the same state,

but not across states; (A1.b) stocks are illiquid and cannot be transferred across states; (A1.c) liquid bond

holdings are weakly positive and the positivity constraint of hand-to-mouth households binds in each period;

and (A1.d) no bonds are traded in equilibrium.

(A1.a)-(A1.d) jointly apply and ensure a tractable representation of the bond market equilib-

rium. Under (A1.a)-(A1.b), households living on the same island make equivalent consumption

and saving decisions. (A1.c) guarantees that H households are strictly hand-to-mouth, while

7The next period hand-to-mouth value function is scaled by λ
1−λ as the state variable is written in terms of total

island bond holdings. As such, the relative transition probability λ
1−λ maps into individual probabilities (s, 1 − s).
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(A1.d) imposes a zero liquidity limit (Krusell et al., 2011).

2.1.2 Labor Market Nominal rigidity arises from sticky wages. As such, hours worked are de-

termined by labor demand in equilibrium. Sticky wages generate empirically consistent procycli-

cal dividends, which are crucial for innovation decisions in an endogenous growth environment.8

Subsequently, "hat"-variables refer to percentage deviations from the steady-state.

Assumption 2 (EARNINGS INCIDENCE). Hours worked are uniformly distributed across household types

in the steady state, i.e., LH = LS = L, but they may fluctuate dis-proportionally off the steady-state, i.e.,

L̂H
t = µL̂t, where µ ∈ [0, µ) and λ−1 < µ.

The parameter µ summarizes the distributional burden of adjustments in aggregate hours

worked across the income distribution.9 The upper bound µ ensures that a tighter monetary policy

restrains aggregate demand (Bilbiie, 2008; Bilbiie and Straub, 2013).

The incidence modelling allows to flexibly cover a number of cases. From Assumption 2 it

follows that L̂S
t = 1−λµ

1−λ L̂t. Suppose now that aggregate hours worked increase. First, if µ = 1,

hours worked are split proportionally off the steady state. Second, if µ = 0, hand-to-mouth

households permanently work the amount of steady state hours and the labor adjustment is com-

pletely borne by saver households. In contrast, if µ = λ−1, the entire labor adjustment is borne by

hand-to-mouth households and our setup mimics the capitalist-worker dynamics of Broer et al.

(2020, 2021a). Third, if µ ∈ (0, 1), hours worked of hand-to mouth households increase under-

proportionally, whereas hours worked of savers increase overproportionally. On the interval

µ ∈ (1, λ−1), hand-to-mouth households overproportionally increase hours worked, while savers

increase hours worked underproportionally. Finally, µ ∈ (λ−1, µ) implies that hours worked of

hand-to-mouth households increase overproportionally, whereas hours worked of savers fall.10

Wage Rigidity Aggregate labor Lt is composed of a continuum l ∈ [0, 1] of differentiated labor

inputs Lt(l) that are bundled according to a CES aggregator with elasticity ϵw > 1. Each union

specifies a nominal wage Wt(l). The demand for labor input l is Lt(l) = (Wt(l)/Wt)
−ϵw Ld

t , where

8The use of sticky prices would not only generate countercyclical markups and profits but also cause a negative
wealth effect which increases hours worked (Bilbiie, 2008, 2020). The distribution of profits thus substantially affects
aggregate labor dynamics in sticky price HANK models.

9Assumption 2 is a two state analog to the general γ(i, Lt) incidence functions used in Werning (2015), Auclert and
Rognlie (2020), Alves et al. (2020) and Patterson (2022). Auclert and Rognlie (2020), for instance, write labor income as
Wt
Pt

· Lt · γ(i, Lt). Applied to our setting, it follows that µ = 1+ ϵH
γ,L, where ϵH

γ,L is the elasticity of the incidence function

with respect to total labor Lt in state H. Normalization implies ϵS
γ,L = − λ

1−λ ϵH
γ,L.

10Empirically, the earnings incidence elasticity µ maps into extensive margin exposure through unemployment risk
(Storesletten et al., 2004; Guvenen et al., 2014; Kramer, 2022), as well as intensive margin exposure through worker
betas (Guvenen et al., 2017). Those papers point out that the bottom of the income distribution overreacts to aggregate
shocks, pushing toward µ > 1. Moreover, Coglianese et al. (2022) provide a detailed overview of a growing number of
papers documenting rising income inequality conditional on contractionary monetary policy shocks (Heathcote et al.,
2010; Coibion et al., 2017; Ampudia et al., 2018; Holm et al., 2021).
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Wt denotes an average wage index, and Ld
t aggregate labor demand. Each union is run by a man-

ager who sets wages to maximize the utility of a hypothetical average household that is composed

out of a hand-to-mouth and saver member with Lt(l) = λLt(l)H + (1 − λ)LS
t (l). Wage setting is

subject to quadratic adjustment costs (Rotemberg, 1982). The manager of union l solves

max
{Wt(l)}

U (Ct(l), Lt(l)) s.t. Ct(l) =
Wt(l)

Pt
Lt(l) + Dt(l) + TH

t − θ

2

(
Wt(l)
Wt−1

− gA
)2

Yt , (2)

where costs are symmetric around the gross technology growth rate gA, proportional to produc-

tion Yt and scaled by θ > 0. In equilibrium, all unions set the same wage, i.e., Wt = Wt(l).

2.1.3 Production A final good YG
t is produced competitively by using a continuum j ∈ [0, 1] of

intermediary goods Xj,t of available quality Aj,t with technology

YG
t = (ZtLt)

1−α
∫

j
A1−α

j,t Xα
j,tdj , (3)

where α ∈ (0, 1) is the share of intermediary goods. Moreover, Zt = Zeẑt denotes an aggregate

technology shock with Z > 0 and ẑt follows an AR(1) process with persistence ρz. The final good

is sold at price Pt, while intermediary goods are bought at price Pj,t. The final good firm maximizes

profits by choosing the demand for labor Ld
t and intermediary goods Xd

j,t.

Intermediary Goods Intermediary goods are produced by identical firms. Each firm behaves as

a monopolist and sets a price Pj,t to maximize profits. Additionally, it invests an amount Ij,t into

technology-enhancing activities, such as R&D expenditures, to improve the future quality Aj,t+1.

Price Setting. To produce Xj,t, intermediary good firms transform one unit of the final good into

one unit of the respective intermediary good. They maximize nominal profits, i.e.,

max
{Pj,t}

Θn
j,t ≡ (Pj,t − Pt)Xd

j,t s.t.
Pj,t

Pt
= α(ZtLd

t )
1−α A1−α

j,t (Xd
j,t)

α−1 , (4)

where the constraint specifies the demand for a particular intermediary input. The solution to this

problem is characterized by αPj,t = Pt, where α−1 > 1 is the gross markup over marginal costs.

Substituting the price setting relation into the maximization constraint yields Xj,t = α
2

1−α Aj,tZtLt

such that final good production is YG
t = α

2α
1−α AtZtLt, where At ≡

∫ 1
0 Aj,tdj denotes the average

quality index. Real profits, in turn, are Θj,t = Θα Aj,tZtLt with Θα = α−1(1 − α)α
2

1−α and, thus,

proportional to quality Aj,t, labor Lt, and exogenous technology Zt.

Innovative Investment. Intermediary firms use the final good to invest an amount Ij,t into innovative

activities by maximizing the discounted sum of real after tax profits. To allow social investment

10



returns to exceed private returns, we assume that an incumbent firm dies with probability δ ∈
(0, 1) and is replaced by a new entrant that inherits the previous technology stock. As stocks

are illiquid assets, the discount factor of intermediary good producers is adjusted by the survival

probability 1 − δ and the probability s to stay on island S.11 Given Aj,0 > 0, their objective is

max
{Aj,t+1}

E0

[
∞

∑
t=0

(βs(1 − δ))t

CS
t

(
(1 − τD

t )Θj,t − s(1 − δ)Ij,t

)]
, s.t. Aj,t+1 = Aj,t + ψIj,t , (5)

where ψ ≥ 0 is the efficacy of innovative investment on quality growth. The law of motion implies

constant returns to scale in the production of new quality, i.e., a higher quality stock requires

higher investment to maintain a certain quality growth rate. Finally, τD
t ∈

[
τD, τD

]
denotes a

distortive profit tax. As steady-state earnings are equalized across households under Assumption

2, τD
t reflects the progressivity of income taxation.

2.1.4 Fiscal and Monetary Policy The government partially insures against income risk by re-

distributing income through lump-sum transfers to hand-to-mouth agents. Its budget balances

TH
t = τD

t Θt , (6)

where Θt ≡
∫

j Θj,tdj are aggregate intermediary goods profits. Moreover, monetary policy sets

the nominal interest rate it according to a Taylor rule, which reacts to gross wage inflation πw
t ≡

Wt/Wt−1, and an AR(1) shock εmt with persistence ρm, i.e.,

it = r + ϕπ ln
(

πw
t

πw

)
+ εmt , with ϕπ > 0 . (7)

2.1.5 Market Clearing Aggregate labor and consumption are denoted by Lt = λLH
t +(1−λ)LS

t

and Ct = λCH
t + (1 − λ)CS

t , respectively. Similarly, aggregate investment is It ≡
∫

j Ij,tdj, and

Xt ≡
∫

j Xj,tdj is the total amount of intermediate production. Real dividends are the sum of final

and intermediary good profits, i.e., Dt = YG
t − Wt

Pt
Lt − α−1Xt + (1 − τD

t )
(
α−1 − 1

)
Xt − It. Stock

market clearing implies ωS
t = ωS

t+1 = 1 in all periods. Aggregate quality growth follows from the

law of motion by gA
t+1 ≡ At+1

At
= 1 + ψ It

At
. Finally, by using the household budget constraints and

the labor union problem, the aggregate resource constraint is written as

Yt = Ct + It +
θ

2

(
πw

t − gA
)2

Yt , (8)

where we define Yt ≡ YG
t − Xt = Yα AtZtLt as net gross domestic product, with Yα = (1− α2)α

2α
1−α .

11These assumptions may reflect the prevalence of competitors or temporary rents from the exclusive use of patents.
The presence of s reflects additional under-investment due to the income risk of savers, e.g., their entrepreneurial talent.
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2.2 Balanced Growth Path Equilibrium

As a solution concept to the HANK-GS economy, we focus on a competitive stationary balanced

growth path equilibrium. It is defined as the sequence of trending variables and prices {Ct, CS
t , CH

t ,

Wt, Dt, TH
t , Yt, YG

t , Xt, It} that are normalized by the level of endogenous technology At. Subse-

quently, we denote stationary variables in small letters and impose without loss of generality

Z = 1 and π = 1. To solve for the approximate stationary equilibrium, we log-linearize the econ-

omy around its non-stochastic steady-state. Subsequently, we restrict the analysis to a balanced

growth path with positive household consumption and technology growth.

Proposition 1 (BALANCED GROWTH PATH (BGP)). If L > L∗, the economy admits a unique steady-

state with strictly positive individual consumption (cH, cS) ∈ R2
+ and technology growth gA > 1 on

τD ∈
(

τD, τD
gA

)
, where τD

gA < τD. The associated labor threshold and tax bounds are given by

L∗ ≡ β−1 − s(1 − δ)

ψα−1(α + λ)Θα
, τD ≡ −λ

α
, and τD ≡ 1 +

1 − λ

α(1 − β)
+

1 − βs(1 − δ)

ψ(1 − β)ΘαL
.

Proposition 1 states that the BGP features strictly positive technology growth if hours worked

are sufficiently large, i.e., labor disutility ν is below a certain value ν∗. In this case, intermedi-

ate good firms face a sufficiently large market size that raises profits and innovative investment.

Steady-state hours worked are spelled out as an implicit function in Appendix B. The tax bounds

τD and τD ensure strictly positive hand-to-mouth and saver consumption, while τD
gA guarantees

strictly positive technology growth.

BGP Inequality The steady-state may feature consumption and income inequality across house-

hold types, which we measure by the ratio of S over H consumption and income, i.e., Γ ≡ cS

cH and

Γy ≡ yS

yH , respectively. If the consumption share in total income, sc, is lower than unity, income

inequality is larger than consumption inequality as Γy = Γ
sc
+ λ

1−λ
1−sc

sc
.

2.3 Cyclical Income Inequality

The short- and long-run effects of stabilization policies propagate through cyclical variations in

income inequality. Lemma 1 provides a measure of cyclical hand-to-mouth income.

Lemma 1 (INCOME CYCLICALITY). Given the share of hand-to-mouth agents λ, the inverse price markup

α and the degree of profit redistribution τD, hand-to-mouth income fluctuates with (ŷt, ẑt, τ̂D
t ) according to

ŷH
t = χŷt + (1 − χ)ẑt + χτ τ̂D

t , with χ ≡ 1 + (µ − 1)
λ

λ + ατD , χτ ≡ ατD

λ + ατD ,

where χ serves as a sufficient statistic, which is strictly increasing in the earnings incidence elasticity µ and

positive on the support of µ ∈ [0, µ) if τD > 0. For τD > τD, we obtain χ ≤ 1 (> 1) iff µ ≤ 1 (> 1).
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To interpret the cyclical behavior of hand-to-mouth income (or consumption) and isolate the

pure HANK channel from the endogenous growth forces, we first abstract from aggregate tech-

nology or tax shocks, as well as from quality-enhancing investment, i.e., ẑt = τ̂D
t = 0 and ψ = 0.

If, for instance, µ > 1 holds, χ decreases in α and τD, while it increases in λ if τD > 0 (resp.

decreases if τD < 0). To understand these comparative statics, consider hand-to-mouth consump-

tion, which is the sum of earnings wtLH
t and transfers tH

t . Under Assumption 2, earnings fluctuate

with aggregate income according to µŷt. As intermediary firm profits vary proportionally and

procyclically with aggregate income, transfers fluctuate with aggregate income by ŷt. Thus, hand-

to-mouth consumption fluctuates as a weighted sum of earnings and transfers. Under Lemma 1,

the sign and degree of cyclical income inequality are captured by χ, such that

ŷS
t − ŷH

t =
1

1 − λ

y
yS

(
(1 − χ)L̂t − χτ τ̂D

t

)
, with

∂(ŷS
t − ŷH

t )

∂ŷt
=

1 − χ

1 − λ

y
yS .

Conditional on technology and tax shocks, one recovers three cases: (i) if χ = 1 (µ = 1) earned

income inequality is acyclical, (ii) if χ > 1 (µ > 1) earned income inequality is countercyclical,

and (iii) if χ < 1 (µ < 1) earned income inequality is procyclical. Higher profit taxes raise the

sensitivity of hand-to-mouth income to aggregate income, rather than idiosyncratic earnings, and

thus lower the degree of countercyclical income inequality.12

An interesting property of the earnings incidence elasticity µ lies in its tight relation to ag-

gregate demand fluctuations. In Appendix OA2.3, we show that the earnings incidence is iden-

tified by µ = 1 + cov(mpcie,υie)
βλ , where cov (mpcie, υie) denotes the covariance between individual

MPCs out of earnings and the elasticity of earnings with respect to aggregate earnings. As such,

if cov (mpcie, υie) > 0, aggregate demand reacts overproportionally to recessionary shocks, and

stabilization policies for aggregate demand become, ceteris paribus, more desirable.

2.4 A General Four-Equation Representation

To analyze the efficacy of stabilization policies, we now derive a general four-equation represen-

tation of the HANK-GS economy. It builds upon (i) an aggregate demand (IS) equation, (ii) an

endogenous growth (EG) equation, (iii) a sticky wage Phillips curve, and (iv) a Taylor rule.13

2.4.1 Aggregate IS Equation

12Comparison: the sensitivity of hand-to-mouth consumption w.r.t. aggregate income is χBilbiie = 1 + φ
(
1 − τD/λ

)
in the sticky price tractable HANK model of Bilbiie (2020). Both statistics coincide if µ = 1+

(
1 + ατD/λ

) (
χBilbiie − 1

)
.

Under exogenous growth, the aggregate Euler equations are isomorphic under this parameter specification such that
one recovers equivalent individual dynamics, with the sole distinction that profits are procyclical.

13Subsequently, we state the four-equation representation without exogenous technology shocks and defer a com-
plete treatment to Appendix B.3.
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Proposition 2 (IS EQUATION). The aggregate IS equation is given by

ŷt = ζ f Et [ŷt+1]︸ ︷︷ ︸
1⃝ transitory income

− ζr
(
ît − Et [π̂t+1]

)
︸ ︷︷ ︸

2⃝ real interest rate

+ ζg ĝA
t+1 − ζg′Et

[
ĝA

t+2

]
︸ ︷︷ ︸

3⃝ permanent income

+ ζτ τ̂D
t − ζτ′Et

[
τ̂D

t+1

]
︸ ︷︷ ︸

4⃝ redistributive tax

, (E.1)

where ζ f = 1 + (1 − s̃) scχ−1

1−λχ
yH
y

, ζr = (1−λ)Γsc
(1−λ)Γ+λ−λscχ

, ζg =
(1−λ) cS

y + gA
ψy

1−λχ
yH
y

, and ζg′ = s̃ gA

ψy
1

1−λχ
yH
y

with

s̃ = s/(s + (1 − s)Γ) and 1 − s̃ denoting the inequality-weighted transition probability measure of risk.

The remaining coefficients ζτ, and ζτ′ are provided in Appendix B.3.

The first two components are standard. The forward-looking transitory income channel 1⃝ cap-

tures the sensitivity of today’s income with respect to future income. Innovative investment re-

duces this sensitivity as sc < 1, while a higher steady-state hand-to-mouth income share yH/y in-

creases this sensitivity as the average MPC level rises. Whenever the transition probability s̃ < 1,

countercyclical income inequality (χ > 1) is no longer sufficient for compounding of the IS equa-

tion (i.e., ζ f > 1). The real interest rate channel 2⃝ reflects the elasticity of today’s output with

respect to real interest rate changes. Similar to the parameter ζ f , innovative investment reduces

direct aggregate demand effects in response to real interest rate changes as sc < 1. However, a

higher degree of countercyclical inequality χ raises the real interest rate elasticity ζr.

The remaining components concern direct effects from endogenous growth and fiscal policies.

The permanent income channel 3⃝ captures the sensitivity of today’s output to changes in contem-

poraneous and future permanent income. In a rational expectations equilibrium with persistence

ρ < 1, higher permanent income has a positive indirect effect on current aggregate demand as

ζg − ρζg′ > 0. Notice that this channel is stronger the higher the steady-state growth rate gA is.

Finally, the redistributive tax channel 4⃝ embeds the effects of transitory profit tax shocks on current

output. As profit taxes redistribute income toward high-MPC households, this channel boosts

aggregate demand, i.e., ζτ − ρζτ′ > 0.

We now state properties of the IS equation regarding the first two channels.

Corollary 1 (IS EQUATION PROPERTIES). There exist threshold values (µ, µ) with 1 < µ < µ such that

(a) the elasticity of aggregate demand w.r.t. real interest rates ζr is strictly positive iff µ < µ; (b) the IS

equation features compounding (ζ f > 1) iff µ > µ, and discounting (ζ f < 1) iff µ < µ; and (c) ζ f is

U-shaped in τD on
[
τD, τD

disc

)
if sc = 1 and 1 < µ < 1 + (1 + α) /λ. Appendix B.3 specifies (µ, µ,τD

disc).

The first two statements augment the standard IS properties of HANK models by steady-state

consumption inequality and investment. Statement (a) provides an upper bound µ such that

a real interest rate tightening restrains aggregate demand. Moreover, statement (b) shows that

hand-to-mouth consumption needs to be more countercyclical compared to HANK to establish

compounding of the IS equation, as the investment channel lowers direct aggregate demand effects.
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While we elaborate on the aggregate short- and long-run effects of progressive redistribution

in Section 2.7, we briefly discuss in Statement (c) how such redistribution affects the transitory

income channel 1⃝ as an automatic stabilizer. Under µ > 1, the sign of the marginal effect of higher

profit taxes on the compounding coefficient ζ f is generally ambiguous. First, greater redistribution

decreases steady-state consumption inequality and, thus, the inequality-weighted risk probability

measure 1 − s̃. Second, it reduces the degree of countercyclical income inequality χ and stabilizes

demand. On the other hand, it increases the income share of hand-to-mouth agents, and, thus, the

average economy-wide MPC. For low (resp. high) initial tax levels, the first two channels domi-

nate (resp. are dominated) and a marginal increase in redistribution weakens (resp. strengthens)

the sensitivity of current demand to future income.

2.4.2 Endogenous Growth (EG) Equation

Proposition 3 (EG EQUATION). The endogenous growth equation is

ĝA
t+1 =

1
1 + Eg

(
Eyŷt + (M − Ey)Et [ŷt+1]︸ ︷︷ ︸

5⃝ transitory income

+ EgEt

[
ĝA

t+2

]
︸ ︷︷ ︸
6⃝ perm. income

−Eτ τ̂D
t + (Eτ −Mτ)Et

[
τ̂D

t+1

]
︸ ︷︷ ︸

7⃝ redistributive tax

)
, (E.2)

where Ey = (1−λ)Γ+λ−λscχ
(1−λ)Γsc

, Eg = (1−λ)Γ+λ
(1−λ)Γ

1−sc
sc

gA

gA−1 , and Eτ = λχτ

(1−λ)Γ denote the partial equilibrium

elasticities of current saver consumption w.r.t. aggregate income, endogenous technology growth, and re-

distributive taxes, respectively. M = gA−βs(1−δ)
gA denotes the partial equilibrium elasticity of endogenous

technology growth w.r.t. future aggregate demand and Mτ = βτDψΘα L
gA with respect to taxes.

The components of the EG equation are tied to a cost of funds effect and a market size effect.

Cost of Funds Effect It describes that current technology growth depends inversely on expected

consumption growth of savers and arises through the stochastic discount factor shaping interme-

diary innovative firms’ decisions. If current consumption is high, the current marginal utility of

consumption and investment costs in terms of forgone consumption equivalents are low. If an

expansionary shock redistributes away from savers, for example, through a higher cyclical in-

equality χ, the sensitivity of saver consumption with respect to aggregate income decreases. This

lowers, ceteris paribus, expected savers’ consumption growth; they smooth their consumption by

paying themselves dividends rather than investing. Thus, countercyclical income inequality sta-

bilizes technology growth, i.e., it lowers (resp. increases) investment in booms (resp. recessions).

Market Size Effect It describes that current technology growth depends on future aggregate

demand. Higher aggregate demand allows firms to sell more goods, increases the discounted sum

of profits and raises innovative investment. If a persistent expansionary shock redistributes away

from savers toward hand-to-mouth households, aggregate demand expands overproportionally
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and endogenous technology growth increases ceteris paribus. In this case, countercyclical income

inequality amplifies technology growth.

We now discuss how the components 5⃝– 7⃝ shape the cost of fund and market size effect in

partial equilibrium. The transitory income channel 5⃝ affects the cost of fund effect through Ey and

the market size effect through M . The strength of the latter effect increases, ceteris paribus, with

steady-state growth gA. A persistent increase in aggregate demand increases current technology

growth. The permanent income channel 6⃝ acts on the cost of fund effect through Eg. By lowering

future expected consumption of savers, it raises expected consumption growth and, thus, inno-

vative investment. This effect is greater the larger the steady-state investment share 1 − sc is and

the lower steady-state growth gA is. Finally, the redistributive tax channel 7⃝ acts on two key mar-

gins. First, Eτ reflects the cost of fund effect by lowering expected savers’ consumption growth.

Second, Mτ lowers technology growth by distorting innovation decisions. Both forces decrease

technology growth in equilibrium.

2.4.3 Phillips Curve and Taylor Rule There are two further equations to be specified, the Phillips

curve and the Taylor rule. Price and wage inflation are linked through π̂t = π̂w
t − gA

t in our econ-

omy. Using the unions’ wage setting, we state nominal rigidities in terms of price inflation.

Proposition 4 (PHILLIPS CURVE). The static price Phillips curve is given by

π̂t = κyŷt − κg ĝA
t+1 − ĝA

t , (E.3)

where κy = κ
1+φsc

sc
, and κg = κ 1−sc

sc

gA

gA−1 are positive, and κ > 0 denotes the common slope of the wage

Phillips curve, provided in Appendix B.3.

An expansion in aggregate demand increases labor demand, inducing unions to set higher

wages, which translates into higher marginal costs and price inflation. As sc < 1, this channel is

strengthened relative to a model without endogenous growth, because a part of the increase in

output is spent on innovative investment. Second, higher technology growth expands the pro-

duction frontier, and reduces marginal costs and, hence, price inflation. If this channel is strong,

the slope of the Phillips curve flattens, or even reverses, such that prices do not respond much to

demand shocks. The model is closed by specifying nominal interest rates, i.e.,

ît = ϕππ̂w
t + ϵmt . (E.4)

2.4.4 HANK-GS as Unified Framework Our representation unifies a number of frameworks.

The model corresponds to (i) a two agent (TA) Keynesian growth economy with permanent het-

erogeneity if s = 1, and to a representative agent (RA) Keynesian growth economy (Benigno and
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Fornaro, 2018) if also λ = 0, χ = Γ = 1; (ii) it collapses to an alternative tractable HANK model

(Bilbiie, 2021) if ψ = 0 and gA = 1 in all periods, to a TANK model (Bilbiie, 2008) if additionally

s = 1; and (iii) to a baseline RANK model (Galí, 2015) if ψ = λ = 0, s = χ = 1. Absent nominal

rigidities, one recovers real model variants: (iv) a flexible price HA growth economy (Cozzi, 2018)

if θ = 0; (v) a RA growth economy (Aghion and Howitt, 1992) if θ = λ = 0, s = χ = Γ = 1; (vi)

a tractable Aiyagari (1994) model if θ = ψ = 0; and (vii) a standard RBC if θ = ψ = λ = 0, s =

χ = Γ = 1. As such, the model is well-suited to study short- and long-run effects of stabilization

policies, while preserving comparability to existing frameworks.

2.5 Dissecting the Role of Income Inequality

We now use the four-equation representation to analyze how income inequality arising from sta-

bilization policies, such as monetary or fiscal policy, shape aggregate output fluctuations in the

short- and long-run. We begin by studying the effects of inequality per se. Therefore, we compare

the HA economy with its RA benchmark to capture the difference between realized long-run out-

put from its unshocked potential counterpart that can be purely attributed to heterogeneity. We

then dissect the role of cyclical inequality and highlight the key forces through which it acts.

2.5.1 Measuring Long-Run Effects of Inequality Throughout the paper, we use two distinct

measures to evaluate the long-run effects of household heterogeneity on technology growth.

Definition 1 (SCARS FROM INEQUALITY). Consider a contractionary policy of persistence ρ ∈ (0, 1):

(a) Scars from inequality are permanent output losses that can be attributed to inequality per se, i.e.,

L (∞) ≡ lim
T→∞

(
(ln Yt+T − ln YP

t+T)− (ln YRA
t+T − ln YRA,P

t+T )
)
=

MHA
g −MRA

g

1 − ρ
,

where Yt+T denotes realized output T periods after the shock, YP
t+T potential output in the unshocked

economy, YRA
t+T and YRA,P

t+T their RA counterparts. Scars from inequality, L (∞), depend on the HA

technology impact multiplier, MHA
g ≡ Mg|λ,χ,s̃,Γ, and the RA multiplier MRA

g ≡ Mg|λ=0,χ=1,s̃=1,Γ=1.

(b) Scars from cyclical variations in inequality are ∂L (∞)
∂χ = 1

1−ρ

∂MHA
g

∂χ .

2.5.2 Understanding the Role of Income Inequality In Proposition 5, we unpack the effects of

cyclical inequality on technology growth using the endogenous growth equation. To do so, we

implicitly use the IS equation to specify aggregate demand.

Proposition 5 (INEQUALITY-EFFICIENCY RELATION). Let us define the impact multiplier of output by

My ≡ ∂ŷt
∂ϵt

and the one for technology growth by Mg ≡ ∂ĝA
t+1

∂ϵt
, respectively. Using Proposition 3, the

17



Figure 1. The inequality-efficiency-diagram under HANK-GS for a contractionary shock (My < 0).
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marginal effect of cyclical income inequality on technology growth is

∂Mg

∂χ
=

1
1 + Eg(1 − ρ)

(
(1 − ρ)My

∂Ey

∂χ
+
(
Ey(1 − ρ) + ρM

) ∂My

∂χ
− ∂Ξτ,m

∂χ

)
, (9)

where Ξτ,m = 0 for a monetary policy shock and Ξτ,m = (1 − ρ)Eτ +Mτ for a tax shock, respectively.

Proposition 5 shows that the effect of higher cyclical income inequality on endogenous tech-

nology growth depends on three forces: (i) how it affects the elasticity of investor consumption

with respect to aggregate income ∂Ey
∂χ (cost of funds effect); (ii) how it affects aggregate demand

∂My
∂χ (market size effect); and (iii) how it affects the elasticity of saver consumption with respect to

tax shocks ∂Ξτ,r
∂χ . The strength and sign of the forces (i)-(iii) are model-specific. When they move in

opposite directions, the sign of the overall effect of cyclical inequality on endogenous technology

growth is ambiguous and depends on the weighting coefficient in front of each particular force.14

Based on equation (9), Figure 1 illustrates the aggregate effects of cyclical income inequality

14Equation (9) implies that there are an infinite number of combinations of (i)-(iii) that are consistent with a certain
marginal effect of cyclical inequality on technology growth. This can be formalized through the lens of isoquants in
case of a contractionary policy (i.e., My < 0). The scars isoquant at level g is analytically given by

∂Ey

∂χ

χ

Ey
=

χ

(1 − ρ)EyMy

([
1 + Eg(1 − ρ)

]
g +

∂Ξz,τ,m

∂χ

)
−
(

1 +
ρ

1 − ρ

M

Ey

)
∂My

∂χ

χ

My
,

and properly defined for |ρ| < 1, Ey ̸= 0, and My ̸= 0. A special case ensues for g = 0, for which the Scars Irrelevance

Frontier of cyclical inequality (SIF) separates the scars amplification region, i.e., ∂Mg
∂χ < 0, from the scars stabilization

region, i.e., ∂Mg
∂χ > 0. The SIF strictly decreases in the elasticity of aggregate demand to cyclical inequality, rotates

clockwise for a higher persistence, and shifts upward for a lower level of g and downward for tax shocks.
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from a contractionary monetary policy shock (i.e., ∂Ξτ,m
∂χ = 0). There are four regions, which are de-

limited by the sign of short- (My) and long-run (Mg) dynamics following an increase in cyclical

inequality. In the top-right dashed region, a higher degree of countercyclical inequality ampli-

fies short- and long-run fluctuations. This is the case either because cyclical inequality jointly

redistributes away from investors and spenders, or because demand amplification outweighs the

increase in saver’s innovation incentives through the cyclicality of her consumption level. In the

bottom left cross-shaded region, a higher degree of countercyclical inequality stabilizes the short-

and long-run propagation of contractionary policies either because they jointly redistribute to-

ward investors and spenders, or because the stabilization in demand outweighs the amplification

through higher investment. In the two blue-shaded regions, the short- and long-run propaga-

tion move in opposite directions; in the bottom right region, output is amplified and technology

growth stabilized; and in the top-left region, output is stabilized and technology growth amplified.

Despite its simplicity, the analytical decomposition derived above summarizes four key statis-

tics to characterize the short- and long-run propagation of cyclical inequality arising from, for

example, a redistributive policy: (i) the elasticity of saver’s consumption exposure to aggregate

income with respect to cyclical inequality, ∂Ey
∂χ

χ
Ey

; (ii) the elasticity of aggregate demand with re-

spect to cyclical inequality, ∂My
∂χ

χ
My

; (iii) the persistence of the shock, ρ; and (iv) a combination

of a cost of funds and a behavioral tax effect resulting from redistributive shocks, ∂Ξτ,m
∂χ . These

statistics locate models, such as the one studied in section 3, in a particular region of Figure 1.

Discussion While we have derived investment decisions in an endogenous growth environ-

ment, the relevant tradeoffs of the inequality-efficiency-diagram in Figure 1 apply to a larger class

of heterogeneous agent models with other forms of investment as well, such as physical capital or

skill accumulation. In the baseline two agent NK model with physical capital accumulation (Galí

et al., 2007; Bilbiie et al., 2022), the investment response is very much insensitive to the degree

of countercyclical inequality. By interpreting the investment response through Mg, this model is

located in the vicinity of the scars irrelevance frontier in the bottom right region, i.e., amplifying

output but not investment. Kekre and Lenel (2022) argue that the investment response is amplified

if a monetary policy shock redistributes income to households with high propensities to take risk.

Neglecting MPC heterogeneity, the model is located above the scars irrelevance frontier in the top

right quadrant. Luetticke (2021) studies the transmission of monetary policy in a HANK model

with heterogeneity in MPCs and MPIs. He documents that aggregate consumption is amplified,

while investment and output are stabilized relative to a RA economy. Such a model is located be-

low the scars irrelevance frontier in the left two quadrants. Similarly, David and Zeke (2022) derive

investment wedges based on a model with limited asset markets participation and price markup

shocks and thus locate below the scars irrelevance frontier. Finally, Heathcote et al. (2020) study a

framework in which workers invest and accumulate labor skills, while being overproportionally
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harmed by recessions. Such a model locates in the top right quadrant.

2.6 Redistributive Monetary Policy, Business Cycles, and Growth

We now study short- and long-run effects of monetary shocks and highlight the role of persistence.

Proposition 6 (IMPACT MULTIPLIERS). Output, technology and inflation multipliers to a monetary

policy shock of persistence ρm ∈ (0, 1) are recursively determined by

(output)
∂ŷt

∂ϵmt
≡ My = −

[
ζ−1

r (1 − ρmζ f ) + (κy − Ωκg)(ϕπ − ρm)− (1 − ρm s̃) EgΩ
]−1

,

(technology)
∂ĝA

t+1

∂ϵmt
≡ Mg = ΩMy ,

(inflation)
∂π̂t

∂ϵmt
≡ Mπ =

(
κy − Ωκg

)
My ,

where the technology-output elasticity Ω ∈ R+ is defined as

Ω ≡ ωF + (1 − ω)M , with ω ≡ (1 − ρm)
1 + Eg

1 + (1 − ρm)Eg
∈ [0, 1] , and F ≡

Ey

1 + Eg
.

Consider the standard case in which a monetary tightening reduces output, i.e., My < 0. The

second equation of Proposition 6 states that a transitory output drop translates into a permanent

technology loss depending on the magnitude of the elasticity Ω, which is a weighted sum between

the contemporaneous cost of funds effect F and the market size effect M . The weight on the

former, ω, strictly decreases in the persistence of the monetary policy shock. If monetary policy is

a one-time surprise (ρm = 0), only the cost of funds effect matters. On the contrary, if the monetary

policy shock is permanent (ρm = 1), only the market size effect matters. Moreover, the sign of the

impact multiplier of inflation, i.e., κy − Ωκg, is, a priori, ambiguous.15

To isolate the interplay between inequality, aggregate demand and technology growth, we first

decompose the short-run output impact multiplier.

Corollary 2 (OUTPUT DECOMPOSITION). For a given level of steady-state consumption inequality Γ,

15In Appendix OA1.1, we show that the sign of the long-run AS slope together with the shock persistence pins down
the sign of Mπ . In a standard upward sloping AS regime, sgn(Mπ) = sgn(My) applies. In this case, cyclical income
inequality amplifies the inflation response under HANK-GS relative to HANK if |εΩ,χ| >|εMy ,χ|, i.e., the elasticity of
the technology-output elasticity w.r.t. cyclical income inequality is larger than that of the output multiplier.
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the short-run output response to a monetary policy shock can be decomposed into

−
(
My

)−1
= (1 − ρm) + κ̃y(ϕπ − ρm)︸ ︷︷ ︸

1⃝ RANK multiplier

+ (1 − ρm)(Ẽy − 1)︸ ︷︷ ︸
2⃝ TANK interest rate elasticity

+ ρm(1 − s̃)(Ẽy − χ)︸ ︷︷ ︸
3⃝ HANK cyclical inequality

+

(
κ(ϕπ − ρm) + (1 − ρm s̃)

(1 − λ)Γ + λ

(1 − λ)Γ

)
1 − sc

sc︸ ︷︷ ︸
4⃝ reduction direct effects

− (1 − ρm)s̃EgΩ︸ ︷︷ ︸
5⃝ TANK permanent income

− (1 − s̃)EgΩ︸ ︷︷ ︸
6⃝ HANK permanent income

− ΩRAκg(ϕπ − ρm)︸ ︷︷ ︸
7⃝ NKPC RANK-GS slope

+ (ΩRA − Ω)κg(ϕπ − ρm)︸ ︷︷ ︸
8⃝ NKPC HANK-GS slope change

,

where κ̃y is the NKPC slope under RANK, 1/Ẽy the demand elasticity w.r.t. real interest rates absent

growth, and ΩRA the endogenous technology elasticity w.r.t. aggregate income changes in an RA economy.

Corollary 2 shows how the interaction of heterogeneity and endogenous growth adds on the

RANK multiplier 1⃝ through the following: 2⃝ a change in the real interest rate elasticity aris-

ing from cyclical inequality due to permanent household heterogeneity between saver and hand-

to-mouth households (TANK); 3⃝ cyclical income inequality interacting with idiosyncratic risk

(HANK); and 4⃝ a reduction in direct demand effects arising from a steeper wage Phillips curve

and a lower sensitivity of aggregate demand with respect to future output and real interest rates

due to the investment channel (sc < 1). The first two channels amplify the output multiplier under

a higher degree of countercyclical inequality (χ > 1), whereas the last channel reduces the output

multiplier. Two additional permanent income demand channels increase the output multiplier: 5⃝
relies on permanent heterogeneity (TANK), while 6⃝ arises from idiosyncratic risk and vanishes

if heterogeneity is permanent. Those channels are stronger when the elasticity of saver consump-

tion to aggregate income Eg or the elasticity of technology growth to aggregate income Ω increase.

Finally, 7⃝ and 8⃝ state that the Phillips curve slope flattens under HANK-GS if ΩRA < Ω and,

hence, leads to further amplification in this case. In Corollary 7 in Appendix OA1.1, we further

show that the HANK-GS output multiplier is amplified relative to HANK if the technology-output

elasticity is sufficiently large, i.e., Ω ≥ Ω. This is the case as the reduction of direct effects needs

to be outweighed by the flattening of the wage Phillips curve and additional aggregate demand

effects arising from permanent income changes.

We now characterize the role of cyclical income inequality χ. As Ω decreases in χ, it is a priori

ambiguous whether higher cyclical inequality amplifies or stabilizes the output response.

Proposition 7 (CYCLICAL INEQUALITY AND OUTPUT FLUCTUATIONS). If ϕπ ≤ κ−1
g , countercyclical

income inequality amplifies output, i.e., ∂My
∂χ < 0, ∀ ρm ∈ (0, 1). If ϕπ > κ−1

g , countercyclical income

inequality stabilizes output, i.e., ∂My
∂χ > 0, on ρm ∈ (0, ρSR

m ), and amplifies output, i.e., ∂My
∂χ < 0, on

ρm ∈ (ρSR
m , 1). The persistence threshold ρSR

m is specified in Appendix B.
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The first statement of Proposition 7 states that cyclical income inequality amplifies the output

response for any admissible shock persistence if monetary policy reacts moderately to wage infla-

tion, i.e., ϕπ ≤ κ−1
g . On the contrary, if the feedback rule is sufficiently responsive to wage infla-

tion, the monetary policy expansion needs to be persistent enough for cyclical income inequality

to act as an amplifier. Intuitively, if monetary policy is sufficiently aggressive, i.e., ϕπ > κ−1
g , indi-

rect demand effects from future transitory and permanent income changes are weakened and the

negative cost of funds effect of countercyclical income inequality dominates.

We now show how scars from cyclical inequality, i.e., the effect of cyclical income inequality

on long-run technology growth, depend on the persistence of the monetary tightening.

Proposition 8 (SCARS FROM CYCLICAL INEQUALITY). There exists a persistence threshold ρLR
m such

that countercyclical income inequality stabilizes technology growth, i.e., ∂Mg
∂χ > 0, on ρm ∈ (0, ρLR

m ),

is irrelevant for technology growth for ρm = ρLR
m , and amplifies technology growth, i.e., ∂Mg

∂χ < 0, on

ρm ∈ (ρLR
m , 1). If ϕπ > κ−1

g applies, ρLR
m > ρSR

m holds true. We specify ρLR
m in Appendix B.5.

Proposition 8 states that countercyclical income inequality amplifies permanent output losses

from a monetary policy tightening if the shock persistence is sufficiently large. This result is re-

lated to the discussion following Proposition 7. Relative to the output multiplier, the technology

multiplier Mg is augmented in a multiplicative manner by the technology-output elasticity Ω. As

the latter depends negatively on the degree of countercyclical income inequality through the cost

of funds effect, the market size effect leads to overall amplification only if the shock is persistent

enough. The degree of countercyclical inequality stabilizes scars from inequality if ρm < ρLR
m , and

amplifies them if ρ > ρLR
m .16 Proposition 8 also states that a monetary tightening needs to be more

persistent to induce cyclical inequality to amplify long-run output rather than short-run output.

Based on the Taylor rule responsiveness ϕπ and the shock persistence ρm, it is interesting to

discuss the location of a particular model economy within Figure 1 by using Propositions 7 and 8.

The economy locates in the bottom-right quadrant for ϕπ ≤ κ−1
g . Whether it is placed above or be-

low the scars irrelevance frontier depends on the persistence threshold ρLR
m . On the contrary, under

ϕπ > κ−1
g there arise three subcases. First, our framework locates in the bottom-left quadrant for

ρm < ρSR
m < ρLR

m ; second, it locates in the bottom-right quadrant below the SIF for ρSR
m < ρm < ρLR

m ;

and third, it locates in the bottom-right quadrant above the SIF for ρSR
m < ρLR

m < ρm.

16We provide comparative statics of the persistence threshold in Appendix OA1.5. We show that ρLR
m decreases

in the degree of idiosyncratic risk 1 − s̃, increases in the slope of the Phillips curve κy, and is independent of cyclical
income inequality χ. In the light of the empirically observed flattening of the Phillips curve around the Great Recession,
our framework may thus provide an additional rationale how countercyclical inequality did not only amplify short-run
output, but also long-run permanent output losses.
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2.7 The Ambiguous Role of Fiscal Redistribution Policies

In the previous sections, we have shown that (cyclical) income inequality plays a key role in shap-

ing aggregate short- and long-run fluctuations. Subsequently, we theoretically discuss the role of

fiscal stabilization policies that directly act on the degree of cyclical income inequality. Such poli-

cies comprise, for instance, temporary UI benefit extensions during economic downturns that are

financed by higher income tax progressivity. Within our stylized analytical framework, we cap-

ture those policies through a transitory increase in the tax rate τD
t with corresponding persistence

ρτ ∈ (0, 1). Subsequently, we dissect the aggregate short- and long-run effects.

Proposition 9 (PROGRESSIVE REDISTRIBUTION). Consider an economy with τD > 0. A transitory

increase in redistribution, i.e., τ̂D
t > 0, affects aggregate outcomes in a HANK model (ψ = 0) as follows.

(a) If wages are fully flexible, or the monetary authority replicates the real interest rate absent nominal

rigidity, then redistribution has no effects on output, i.e., My = 0.

(b) If wages are sticky, then greater redistribution is expansionary, i.e., My > 0.

Moreover, a transitory higher tax redistribution affects aggregate outcomes in a HANK-GS model (ψ > 0)

with BGP growth rate gA > 1 + ((1 − sc)/(1 + φ)sc)(1 − βs(1 − δ)) as follows.17

(c) If wages are fully flexible, or the monetary authority replicates the real interest rate absent nominal

rigidity, then greater redistribution contracts short- and long-run output, i.e., My < 0 and Mg < 0.

(d) If wages are sticky, then greater redistribution has ambiguous effects.

(d.1) If ρτ = 0 and ϕπ < κ−1
g , then short-run output rises (My > 0) and technology falls (Mg < 0).

(d.2) If ρτ > 0, then there exist thresholds Dg > Dy on the strength of the demand effect ζτ − ρτζτ′ ,

above which short-run output My and technology growth Mg increase. The thresholds are spelled

out in Appendix B.6. If Dg > D > Dy, there exists T∗ such that ln Yt+T > ln YP
t+T for T < T∗

and ln Yt+T < ln YP
t+T for T > T∗, where ln YP

t+T denotes output in the unshocked economy T

periods after the shock. This specific time horizon is characterized by

T∗ = −
ln
(

1 − (1 − ρτ)
My
Mg

)
ln ρτ

.

In the absence of endogenous growth and nominal rigidities, progressive redistribution is ir-

relevant as output is purely determined by supply factors. Adding wage stickiness makes greater

redistribution expansionary. Intuitively, redistribution to high-MPC households raises aggregate

17This bound generically applies for reasonable calibrations.
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demand and, hence, short-run output. This mechanism is, for instance, explored in Kekre (2022)

or Ferriere and Navarro (2022) through UI insurance and progressive income taxation.

In the presence of endogenous growth, without nominal wage rigidity, the effects of transitory

redistribution on short-run output and long-run technology are contractionary. In this case, an

increase in taxation reduces innovation incentives and thus the long-run production frontier along

two margins: a standard behavioral effect due to lower returns to innovation, and the previously

described cost of funds effect. As such, permanent income and aggregate demand fall.

When both endogenous growth and aggregate demand interact in the presence of nominal

wage rigidity, the effect of progressive redistribution is generally ambiguous. On the one hand,

an increase in redistribution induces a Keynesian Cross logic by increasing aggregate demand

and innovation incentives through the market size effect. This effect acts on the IS equation

through ζτ − ρτζτ′ (cf. equation (E.1)) and translates to the EG equation. It is consistent with

Zidar (2019), who empirically documents significant employment and growth effects from tax

cuts on lower-income households. On the other hand, it reduces innovation incentives through

−(1 − ρτ)Eτ − ρτMτ (cf. equation (E.2)). This effect is empirically consistent with Akcigit et al.

(2022), showing that tax increases on higher-income households dampen innovation activity. If the

demand effect is sufficiently strong, both output and technology increase. For a medium strength,

output increases while technology falls. In this case, there exists a specific time span t + T∗ be-

fore which the level of output increases relative to a counterfactual unshocked economy, and after

which it decreases. Finally, if the demand effect is sufficiently weak, both output and technology

fall. Interestingly, Proposition 9 may thus rationalize the inconclusive empirical evidence on the

effects of taxation on growth in the medium run (Stokey and Rebelo, 1995; Jaimovich and Rebelo,

2017; Jones, 2022). Within our framework, this ambiguity depends on the strength of demand

effects and the persistence of the redistribution shock.

2.8 Model Mechanisms and Scars from Inequality: A Numerical Example

In this section, we use our analytical model to provide an off the shelf numerical assessment of

the key mechanisms, which we will investigate in-depth in the quantitative section 3.

The model period is a quarter. We set β = 0.995 to obtain an annual interest rate of 4%.

The mass of hand-to-mouth households is λ = 0.35, and the probability of staying a saver is

s = 0.965. We set the inverse Frisch elasticity to φ = 1. In line with Bilbiie (2020), we choose a

degree of countercyclical earnings inequality of χ = 1.45, which maps into an earnings incidence

of µ = 1.66.18 We set the profit tax to τD = 0.33 to obtain no steady-state consumption inequality

(Γ = 1), respectively τD = 0.35 under exogenous growth.19 Similar to Fornaro and Wolf (2021),
18Empirical estimates of the matching multiplier for the US provided by Patterson (2022) indicate a value

cov (mpcie, υie) > 0 such that µ plausibly exceeds unity.
19Unlike the exogenous growth case, we show in Appendix B.8 that the first-best BGP under endogenous growth

24



we set α = 0.50 to match a quarterly share of R&D spending in GDP of 2%. The death probability

is δ = 0.0125. The efficacy of R&D spending is ψ = 1.36, which implies a quarterly steady-state

growth rate of 0.50%. We normalize steady-state hours worked to L = 1 by setting the labor

disutility to ν = 0.61. Regarding the Phillips curve we set ϵw = 10 and choose an adjustment cost

parameter of θ = 196, consistent with an average annual wage contract obtained from a Calvo

reset probability (Born and Pfeifer, 2020). We set the AR(1) persistence to ρm = 0.65 and ρτ = 0.90.

Finally, the Taylor coefficient is ϕπ = 1.80, ensuring a locally determinate equilibrium.

Decomposing HANK-GS Table 1 decomposes impact multipliers for technology growth, out-

put, inflation, aggregate consumption and consumption inequality for a monetary and a tax shock

among three model variants: a representative agent (RA) economy, a permanent heterogeneity

two agent (TA) economy, and a heterogeneous agent (HA) economy with idiosyncratic income

risk and cyclical inequality. We also compute associated permanent output losses.

Table 1. Impact multipliers and permanent output loss to monetary policy and progressive tax shocks.

GROWTH ENVIRONMENT MODELa TAX IMPACT MULTIPLIERSb PERM. LOSS

τD Mg My Mπ Mc ∆MS−H
c L (∞)

A. Monetary shock

Exogenous RA 35% n.a. -0.60 -0.14 -0.60 n.a. 0.00
TA 35% n.a. -0.75 -0.18 -0.75 0.52 0.00
HA 35% n.a. -0.78 -0.19 -0.78 0.54 0.00

Endogenous RA 33% -0.94 -1.43 -0.24 -0.52 n.a. -0.67
TA 33% -0.83 -2.11 -0.41 -1.31 2.68 -0.60
HA 33% -1.10 -2.78 -0.55 -1.73 3.54 -0.79

B. Progressive tax shock

Exogenous RA 35% n.a. 0.00 0.00 0.00 n.a. 0.00
TA 35% n.a. 0.41 0.10 0.41 -1.82 0.00
HA 35% n.a. 0.94 0.23 0.94 -2.19 0.00

Endogenous RA 33% -0.33 -0.27 -0.03 0.06 n.a. -0.83
TA 33% -0.34 -0.07 0.02 0.27 -0.91 -0.84
HA 33% -0.10 0.67 0.18 0.78 -1.76 -0.25

a HA model: s = 0.965, λ = 0.35, χ = 1.45; TA model: s = 1.00, λ = 0.35, χ = 1.45; RA model: s = 1, λ = 0, χ = 1.
b The monetary shock corresponds to a 25-basis point increase in the quarterly nominal interest rate through ϵmt. The
tax shock reflects a 3% increase, which corresponds roughly to a 1pp increase in τD

t . Impact multipliers are denoted
in terms of percentage deviation from steady-state. Additionally, inflation and technology growth are expressed in
annual terms. Analytical multipliers for progressive tax shocks are provided in Appendix B.6.

While household heterogeneity amplifies short-run output, inflation and consumption inequal-

ity to a monetary tightening in an exogenous growth environment, the effects are ambiguous un-

der endogenous growth, in line with the previous theoretical discussion (cf. Proposition 7 and

does not admit perfect insurance, i.e., it is characterized by consumption inequality Γ > 1. However, to ease comparabil-
ity between exogenous and endogenous model variants, we always ensure a perfect insurance steady state.
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8). Under permanent heterogeneity, the technology multiplier Mg is stabilized relative to the RA

case (cf. Definition 1). In contrast, the short-run output multiplier My contracts more strongly,

and consumption inequality rises substantially. Idiosyncratic risk under HANK-GS, however, am-

plifies the reduction in technology growth such that one obtains roughly 20% scars of inequality to

a 25-basis points monetary contraction. The corresponding persistence threshold under HANK-

GS is ρLR
m = 0.49, whereas the one under permanent heterogeneity is ρLR

m = 0.94. Remarkably,

there arises a self-enforcing amplification spiral as endogenous growth itself substantially raises

the degree of countercyclical consumption inequality.

Impact multipliers to a progressive tax shock mirror closely Proposition 9. They are expan-

sionary under the exogenous growth environment with household heterogeneity. In contrast, a

progressive tax shock contracts short- and long-run output in an endogenous growth RA econ-

omy. A TA economy falls into the weak aggregate demand regime, as both short- and long-run

output contract, the former however less than in the RA benchmark. Finally, one obtains an in-

crease in short-run output if countercyclical income inequality interacts with idiosyncratic risk.

In this case, the HA model falls into the medium aggregate demand regime and generates, per-

haps surprisingly, long-run gains from inequality. As such, the tax increase depresses the level of

output after only 3 years (cf. Proposition 9 statement (d.2)).

2.9 Discussion and Additional Results

2.9.1 Equilibrium Determinacy The Taylor-principle, i.e., ϕπ > 1, does not ensure local deter-

minacy in a HANK economy with countercyclical risk or inequality (Acharya and Dogra, 2020;

Bilbiie, 2021). In Appendix OA1.1, we state determinacy conditions for our HANK-GS economy.

There emerge three aggregate supply (AS) regimes: a benchmark upward sloping AS regime, a

flat AS regime, and a downward sloping AS regime. We show that procyclical income risk and

inequality, which lead to a discounted Euler-equation, are no longer sufficient to ensure determi-

nacy under an upward sloping AS regime. Intuitively, there arises a complementarity between

aggregate demand and permanent income through the market size effect, which may reverse the

discounting. Second, we argue how the HANK-GS framework can resolve the missing (dis)inflation

puzzle during the Great Recession and the price puzzle if the long-run Phillips curve becomes rela-

tively flat under the upward sloping AS regime. Under endogenous growth, monetary tightening

restrains aggregate demand and technology growth. If the latter channel is sufficiently strong, in-

flation remains almost insensitive or even rises. Third, we derive conditions under which a fiscal

policy that targets high BGP growth restores an upward sloping AS regime.

2.9.2 Forward Guidance Puzzle The forward guidance puzzle means that central bank announce-

ments on the future path of interest rates are theoretically extremely powerful, however, their
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macroeconomic impact is greatly overestimated as indicated by empirical evidence (Del Negro

et al., 2015). In Appendix OA1.2 we first show that our model is subject to a "Catch-22", similar

to (Bilbiie, 2021); while countercyclical income inequality amplifies short-run output, the forward

guidance puzzle on output and technology growth is ruled out under procyclical income inequal-

ity. We then consider two extensions to resolve this tension. First, additional procyclical income

and production risk being orthogonal to cyclical income inequality as in Bilbiie (2021); second,

bounded rationality in the form of cognitive discounting (Gabaix, 2020; Pfäuti and Seyrich, 2022).

Both extensions act on expectations and, hence, effectively reduce the relative weight on the mar-

ket size effect. As a result, monetary policy needs to be even more persistent to guarantee that a

higher degree of countercyclical inequality amplifies permanent output losses.

2.9.3 Intertemporal Marginal Propensities to Consume Auclert et al. (2018) demonstrate the

importance of intertemporal marginal propensities to consume (iMPCs) in disciplining general

equilibrium models with heterogeneous agents. We provide iMPCs under HANK-GS in Appendix

OA1.3 and show how they compare to HANK depending on the technology output elasticity Ω.

2.9.4 Consumption versus Income Inequality Empirically, consumption inequality reacts more

countercyclical than income inequality in response to demand (Coibion et al., 2017; Ampudia et al.,

2018) or technology (Gaudio et al., 2021) shocks. In Appendix OA1.4, we first show that income

inequality under HANK-GS is allowed to be slightly procyclical to generate countercyclical con-

sumption inequality in response to positive demand and labor-augmenting technology shocks.

Second, we show that consumption inequality is more countercyclical than income inequality.

2.9.5 NKPC with Nonuniform Earnings Incidence For reasons of parsimony, our derivation

of the wage Phillips curve relies on a hypothetical average household. Thus, we differ from union

objectives studied, for instance, in Colciago (2011) or Ascari et al. (2017) extending the setup of

Erceg et al. (2000) and Schmitt-Grohé and Uribe (2005) by maximizing a utilitarian sum of utilities.

In Appendix OA2, we follow their roots and choose a utilitarian objective that takes explicitly the

earnings incidence into account when setting wages. We show that the slope of the Phillips curve

depends on the incidence in a U-shaped manner. This is the case as unions provide earnings

insurance across households by increasing the slope of the Phillips curve and effectively reducing

aggregate fluctuations in hours worked.

3 A Quantitative HANK-GS Economy

The previous section analytically characterized the role of household heterogeneity for the short-

and long-run propagation of stabilization policies. We now relax a number of assumptions, which
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were adopted for the sake of tractability, and refine the setup to a rich quantitative framework.

Later on, we use the refined framework to check the robustness of the analytical results and to

quantify the short- and long-run effects of monetary policy and social insurance programs.

3.1 Environment

The quantitative framework extends the analytical setup along three dimensions. First, beyond

the investor-spender dichotomy, we incorporate multiple layers of household heterogeneity act-

ing on the joint distribution of MPCs and MPIs. Second, we decompose labor income risk into

adjustments in hours worked and the risk of becoming unemployed. Third, the welfare state par-

tially insures against idiosyncratic risk through a broader set of social insurance policies, such as

tax and transfer programs. The income and wealth distribution endogenously adjust to policy

changes. The setup is directly stated in stationary form, where gA
t+1 = At+1/At denotes gross

technology growth, rb
t the real net interest rate, and wt ≡ Wt

AtPt
the normalized real wage rate.

3.1.1 Households The utility of household i now depends on consumption cit ≡ Cit
At

, hours

worked ℓit, and employment status eit ∈ {W, US, UL} according to U(cit, ℓit, eit) = u(cit)− ν(ℓit, eit).

The state values of eit represent employment (W), insured short-run unemployment (US) and

uninsured long-run unemployment (UL), respectively. We assume a standard CRRA utility, i.e.,

u(cit) =
c1−σ

it
1−σ and ν(ℓit, eit) = 1e=Wνt

ℓ
1+φ
it

1+φ + 1e∈{US,UL}ν. A time-invariant share ΛE of households

are entrepreneurs, who invest to create and accumulate new innovations, while the remaining

share 1 − ΛE are workers. Entrepreneurs have a relative stock of innovations ait ≡ Ait
At

and are

identified with a dummy dE = 1. Moreover, agents are heterogeneous in their discount rate βit,

their labor productivity hit, and their wealth bit ≥ b, where b is a borrowing limit. The normalized

discount rate is β̃it = βit(1 − ξ)(gA
t+1)

1−σ, where ξ ∈ (0, 1) is a death rate. Unless necessary, we

subsequently drop (i, t) indexes and indicate next period variables with a prime " ′ ".

We denote a household’s state by s ≡ (h, β, e, dE). The probability of moving from h to h′

and β to β′ are denoted by Ph(h′|h) and Pβ(β′|β), respectively. We denote by Fh(h) the invari-

ant distribution of labor productivity induced by a Markov chain. Unemployment insurance is

temporary and the probability of switching from insured short-run unemployment to uninsured

long-run unemployment is Pe(UL|US) ≡ 1 − ρS, such that Pe(US|US) ≡ ρS. The probability of

switching from employment to unemployment depends on the productivity h as well as the eco-

nomic conditions, and will be specified below. By investing a real amount x ≡ X
A , entrepreneurs

create innovations with a success probability px(x). When an individual dies, a newborn starts

with zero net worth and inherits the entrepreneurial type of her parents, whereas β′ and h′ follows

their respective Markov processes. The government fully taxes bequests, and innovations are lost

upon death. The distribution of households over the state-space (a, b, s) is denoted by mt(a, b, s).
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We can state the per period budget constraint in real terms as

c + (gA)′b′ = yd + b − T
(

yd
)
+ T − ψ(x) , where

yd = whℓ1e=W + min{ςwhℓ, ς}1e=US + 1e∈{UL,US}Tu + rbb + Θ
(
a
)

.

(10)

Successful entrepreneurs receive an amount Θ(a) as returns to innovative investment. Wage

payments and unemployment benefits to short-run unemployed workers are given by whℓ and

min{ςwhℓ, ς}, respectively, where ς is the unemployment insurance (UI) replacement rate and ς

defines the maximum cap. This specification approximates the US unemployment insurance law.

Tu defines minimum transfers that are provided to the needy, i.e. all unemployed households, and

captures safety-net programs such as food stamps, cash assistance, or transfers to the disabled.

T (yd) is the tax schedule on disposable income, and T denotes a lump-sum transfer.

While all households consume c and save an amount b′, investment x of entrepreneurs incurs

costs ψ(x) ≥ 0, with ψ(x)
∂x > 0, to improve their relative innovation stock a. Upon success, the in-

novation improves the individual stock by ηA, where η > 0 denotes the step-size that is linked to

the economy-wide innovation stock A.20 This modelling choice captures the non-rivalry assump-

tion that is, in the presence of increasing returns to scale, an integral part of endogenous growth

models. Households’ recursive problem writes

V(a, b, s) = max
{c,b′,x}

U(c, ℓ) + β̃Eh′,β′,e′
[
dEI(a′, b′, s′, x) + (1 − dE)V(0, b′, s′)

]
,

s.t. I(a′, b′, s′, x) =
∫

ι

(
(1 − px(x))V

(
a′, b′, s′

)
+ px(x)V

(
a′ + η, b′, s′

))
dFι(ι) ,

a′ = ι

(
1 − δA

(gA)′

)
a , b′ ≥ b , and (10) ,

where I(a′, b′, s′, x) defines the value associated with innovative investment for a given invest-

ment x. According to the law of motion for a′, an innovation depreciates relative to the overall

quality of innovations through (gA)′ and depreciation δA. The shock on the stock of innovation ι

captures innovation success or failure orthogonal to the investor’s investment.

3.1.2 Labor Market and Earnings Exposure Similar to section 2, nominal rigidity arises from

the unions’ wage setting. Each employed household i provides hitℓikt effective hours of work to

a particular union k, which combines them into a union-specific task, i.e., Lkt =
∫

eikthitℓiktdi. As

before, a competitive labor packer bundles these tasks according to a CES aggregator and sells

this service at wage Wt. Each union k sets a wage Wkt to maximize the utility of a representative

member subject to quadratic adjustment costs θ
2

(
πw

kt − gA)2 that are directly passed onto mem-

20This setup is isomorphic to the analytical innovation model from section 3, as the law of motion can be rewritten
as Aj,t+1 = p

(
Aj,t + η

)
+ (1 − p)Aj,t, with p = (ψ/η)Ij,t.

29



bers’ utility. πw
kt =

Wkt
Wk,t−1

is the gross wage inflation rate. We assume that unions allocate hours

worked among their members based on a splitting rule, which captures intensive and extensive

margin adjustments. First, off the steady-state total labor across h-types follows

∆Lh
kt ≡ Lh

kt − Lh
k = µ(h)(Lkt − Lk) , with

∫
h

µ(h)dFh(h) = 1 ,

where Lk and Lh
k denote economy-wide steady-state labor in union k and at productivity h, respec-

tively. The incidence function µ(h) captures overall labor adjustments across productivity types.

Second, for a given h-type, we assume that all members work the same number of hours, i.e.,

ℓh
ikt = ℓh

kt. Third, across all unions, a lottery is organized that determines which households are

unemployed. As such, total h-type efficiency weighted hours worked within an union k are given

by Lh
kt = h(1 − uh

kt)ℓ
h
kt, where uh

kt denotes the unemployment rate for a certain h-type. Unions

break changes in total labor at productivity h, i.e., ∆Lh
kt, into

∆ℓh
kt =

ϕ(h)
1 − uh

k
×

∆Lh
kt

h
, and ∆uh

kt = −
(

1 − ϕ(h)
ℓh

kt

)
×

∆Lh
kt

h
, (11)

where ϕ(h) captures the extent to which total labor fluctuations translate into adjustments in hours

worked per worker, and 1 − ϕ(h) captures adjustments in the employment rate.21 Fourth, we

focus on a steady state in which hours worked are identical across h-type, i.e., ℓ
h
k ≡ ℓk. Finally, the

unemployment rate for h-productivity is consistent with flows in and out of employment, i.e.,

∆uh
kt+1 = ∑

h̃

(
P̃e,t({US, UL}|W; h)︸ ︷︷ ︸

separation rate at h

(1 − uh
kt)− Pe,t(W|{US, UL}; h)︸ ︷︷ ︸

job-finding rate at h

uh
kt

)Fh(h̃)
Fh(h)

Ph(h|h̃) . (12)

The sum with respect to all possible states h̃ comes from the fact that the unemployment rate

of a specific h-group evolves with inflows and outflows from other productivity groups.22 In

reality, many short-run unemployed workers do not benefit from UI. To account for this fact, we

assume that only a fraction ΛS of separated workers takes up unemployment benefits, such that

Pe,t(US|W; h) = ΛSP̃e,t({US, UL}|W; h) and Pe,t(UL|W; h) = (1 − ΛS)P̃e,t({US, UL}|W; h).

Unions are identical, face the same labor demand, Lt = Lkt, and set the same wage Wt = Wkt.

21Accordingly, the expression for ∆uh
kt follows from the identity ∆Lh

kt/h = ∆ℓh
kt(1 − uh

k )− ℓh
kt∆uh

kt.
22Solving the former equation pins down the separation rate for a given job-finding rate. It requires to solve the

linear system FX = G, with elements in G such that gh
kt = ∆uh

kt+1 + uh
kt − ∑h̃(1 − Pe(W|U; h̃))uh̃

kt
Fh(h̃)
Fh(h)

Ph(h|h̃) and

elements of F such that fh,h̃ = (1 − uh̃
kt)

Fh(h̃)
Fh(h)

Ph(h|h̃). A similar equation pins down the job-finding rate given the
separation rate.
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Wage inflation is then described by the dynamic Phillips Curve

ϵw

θ
Lt

∫
i

(
ν′
(

Lt
)
− ϵw − 1

ϵw
u′(Ct)wt

(
1 − ∂T (Yd)

∂Yd

))
= πw

t

(
πw

t − gA
)
− β̃tEt

[
πw

t+1

(
πw

t+1 − gA
)]

,

where Ct and Yd
t denote aggregate consumption and income, respectively.

3.1.3 Final Production and Innovative Intermediary Goods The specification for production

sector closely follows the analytical model. By combining labor and a continuum of intermediary

goods Xjt of quality Ajt, final good producers operate with technology YG
t = (ZtLt)1−α

1∫
0

A1−α
jt Xα

jtdj.

They competitively choose labor and intermediary inputs. Final goods are sold at price Pt, inter-

mediary goods are bought at price Pjt, and labor pays a wage Wt.

Each intermediary innovative good is produced by a single monopolistic firm, which redis-

tributes its profit to the entrepreneur who owns the firm. As in the analytical model, they set

a price Pjt = Pt/α at which they sell an amount Xjt = α
2

1−α AjtZtLt. Real profits are given by

Πjt = (1 − τD)Θα AjtZtLt, where τD denotes a flat dividend tax. As At ≡
∫ 1

0 Ajtdj, aggregate

profits and normalized real rents are given by

Πt =
∫

j
Πjtdj = (1 − τD)Θα AtZtLt , Θ(ajt) = ajt

Πt

At
.

Finally, gross domestic output is Yt = YG
t − Xt = Yα AtZtLt.

3.1.4 Government and Monetary Policy The government collects revenues by taxing dispos-

able income, profits and dividends and by issuing bonds. Disposable income taxes are specified

by an HSV schedule (Benabou, 2002; Heathcote et al., 2017), i.e.,

T (yd) = max
{

0, yd − ϑ
(

yd
)1−ϱ

}
, (13)

where ϱ ∈ (−∞, 1) reflects the constant rate of tax progressivity for yd > 0. If ϱ = 0, the income tax

schedule is linear with constant marginal tax rate 1− ϑ. If ϱ ∈ (0, 1) the tax schedule is progressive

as the ratio of marginal tax rate to the average tax rate is T ′(yd)/
[
T (yd)/yd] > 1, whereas ϱ < 0

leads to a regressive tax schedule. Total income taxes are T
y
t ≡

∫
(a,b,s) T (yd) dmt(a, b, s), dividend

taxes TD
t = τDΘαZtLt, and bequest taxes Tb

t =
∫
(a,b,s) ξb dmt(a, b, s). They are used to finance an

exogenous level of government spending Gt, social insurance transfers (i.e., unemployment bene-

fits and safety-net transfers) St =
∫
(a,b,s)

(
1e=US min {ςwℓh, ς}+ 1e∈{US,UL}Tu) dmt(a, b, s), interest

payments on bonds rb
t BG

t and potential lump-sum transfers to households Tt. The government

specifies the level of UI generosity through three margins: a probabilistic duration ρS, a replace-
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ment rate ς, and a maximum cap of benefits ς. The government budget constraint is

gA
t+1

BG
t+1

At+1
+ T

y
t + TD

t + Tb
t = (1 + rb

t )
BG

t
At

+
Gt

At
+ Tt + St . (14)

Furthermore, monetary policy sets the nominal interest rate according to a Taylor rule, which

depends on nominal gross wage inflation πw
t and the output gap, i.e.,

it = rb + ϕπ

(
πw

t
πw − 1

)
+ ϕY

(
Yt

Y
− 1
)
+ ϵmt , (15)

where rb is the steady-state real interest rate. The Fisher identity implies 1 + rb
t = 1+it

Et[πt+1]
, with

πt ≡ Pt
Pt−1

. Finally, price inflation is linked to wage inflation according to πt =
πw

t
gA

t

Zt−1
Zt

.

Government Budget When studying transitional dynamics, we consider different scenarios on

how the government balances its budget: (i) government spending Gt adjusts; (ii) lump-sum taxes

Tt adjust; (iii) the degree of tax progressivity ϱ̃t adjusts following the modified schedule T (yd) =

max
{

0, yd − ϑϱ̃t/ϱ
(
yd)1−ϱ̃t

}
where the exemption threshold is kept fixed; and finally (iv) debt BG

t

adjusts and the associated deficit is reimbursed over z periods using lump-sum taxes Tt.23

3.1.5 Balanced Growth Path Equilibrium

Definition 2. Given an initial stock of innovations A−1, a nominal wage W−1, government debt BG
−1, an

initial distribution m−1(a, b, s) and exogenous sequences of taxes and transfers including unemployment

benefits and safety net transfers that satisfy the governmental budget constraint (14), a balanced growth

path general equilibrium is a sequence of prices {Pt, Wt, πt, πw
t , rb

t , it}, a growth rate gA
t+1, individual policy

functions {c(a, b, s), b′(a, b, s), x(a, b, s)}, a joint distribution over entrepreneurial innovations, assets,

and types mt(a, b, s), and aggregates {Yt, Lt, Ct, Gt, Bt, Tt, At} such that:

1. Households, unions and firms optimally solve their program.

2. Monetary and fiscal policy follow their rules.

3. Good markets clear and the resource constraint writes Ψt +
Gt
At

+
∫
(a,b,s) c(a, b, s) dmt(a, b, s) = Yt

At
,

where Ψt ≡
∫

ψ(x) dmt(a, b, s) is aggregate innovative investment.

4. Total bond demand equals its supply, i.e., Bt ≡
∫
(a,b,s) b dmt(a, b, s) = BG

t .

23Specifically, we let lump-sum taxes jump when the shock occurs at time t. Afterwards, they slowly decay with
persistence 0 < ρT < 1 according to Tt+z = ρz

TTt. The jump is a function of the present value of future primary deficits
taking into account the path of interest rates and technology growth rates. We characterize the jump in Appendix C.2.1.
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5. On the balanced growth path, variables grow at the endogenous technology growth rate

gA = (1 − δA) + η
∫
(a,b,s)

px(x(a, b, s))
ΛE

dmt(a, b, s) .

The model has no analytical solution and is solved numerically. We use standard fast-techniques

such as the endogenous grid method and non-stochastic simulations, described in Appendix C.2.

3.2 Calibration

The model period is a quarter. We calibrate the model along the balanced growth path to the US

economy. Our calibrated parameters and targeted moments are summarized in Table 2.

Table 2. Calibrated parameters.

PARAMETER SYMBOL VALUE SOURCE/TARGET

Preferences
Discount factor {∆β, βM, pβ} {0.026, 0.97, 0.995} quarterly MPC of 0.18, BG/Y of 40%
Death rate ξ 0.005 40 years of average working life
Preference parameters {σ, φ, ν} {1.5, 1.0, 10} Heathcote et al. (2010), 1/3 time at work

Labor Market
Permanent component {ρh, σ2

h} {0.973, 0.04} Storesletten et al. (2004)
Elasticity of labor unions ϵ 7 Ferriere and Navarro (2022)
Adjustment cost θ 200 NKPC slope of 0.035
Steady-state unemp. rate uh Table 3 CPS data
Job-finding/separation rate {Pe, ϕs} Table 3 CPS data, Krusell et al. (2017)
UI take-up rate ΛS 0.70 IUR of 3.0 (BLS data)
Incidence functions {µ(h), ϕ(h)} Table 3 CPS data

Technology & Innovation
Share of entrepreneurs ΛE 0.10 fraction of US entrepreneurs
Depreciation (quarterly) δA 0.03 assumption
Innovation step parameters η 0.50 gA

BGP = 2%
Variance of innovation shock σ2

ι 0.0225 income Pareto coeff. of 1.7
Success probability γ 0.44 elasticity of innovation to corp. tax
Returns to scale α 0.40 share of profits in total income

Government & Monetary Policy
Tax parameters {ϱ, ϑ, τD} {0.1, 0.7, 0.21} US tax code, G/Y=0.15
Taylor rule {ϕπ , ϕY} {1.5, 0} standard values, e.g., Auclert et al. (2018)
UI benefits {ς, ς} {0.4, 0.265} US average, 66% of avg. income
UI duration ρS 0.50 expected length of 6 months
Safety-net transfers Tu 0.102 1.02% of GDP, McKay and Reis (2016)

Households Following Heathcote et al. (2010), we set the inverse EIS to σ = 1.5 and the inverse

Frisch labor supply elasticity to φ = 1. The latter value lies in between the estimates obtained for

male (0.5) and female (1.5) workers. The borrowing limit is specified by b = 0. To be consistent

with the BGP concept, the labor disutility shifter is normalized to νt = ν0(gA
t )

1−σ, where ν0 is

chosen such that hours worked of employed households equal ℓ = 1/3 on the BGP. The death

probability is ξ = 0.005. We assume that the logarithm of idiosyncratic labor productivity h fol-
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lows an AR(1) process, i.e., log(h′) = ρhlog(h) + ϵ′h, where ϵh ∼ N (0, σ2
h ), with σ2

h = 0.04 and

ρh = 0.973, which is in the range of plausible values in Storesletten et al. (2004) (Table 2). We

discretize the number of labor productivity realizations h into 5 bins, i.e., h ∈ {h1, ..., h5}.

Households differ in their discount factor component β ∈ {βL, βM, βH}, which follows a

Markov chain with transition probabilities Pβ(β′|β). We calibrate transitions between the "pa-

tient", "mid-patient" and "impatient" types such that households can only move to the adjacent

states according to Pβ(βM|βL) = Pβ(βM|βH) = 1 − pβ, Pβ(βH |βM) = Pβ(βL|βM) = (1 − pβ)/2,

and Pβ(βi|βi) = pβ, ∀i. In our setup, β-heterogeneity generates heterogeneous MPCs across

households (Carroll et al., 2017) and takes over the role of idiosyncratic shocks between savers and

hand-to-mouth households in the analytical model. We follow Krusell and Smith (1998), Kekre

(2022) and Ferriere and Navarro (2022), and assume pβ = 0.995, βL = βM −∆β and βH = βM +∆β.

We set βM = 0.97 and ∆β = 0.026 to generate an average MPC out of transitory income of 0.18 and

an aggregate debt-to-GDP ratio of 40%, consistent with the US ratio over the past 40 years. Using

β-heterogeneity to generate heterogenous MPCs is consistent with Aguiar et al. (2020), who argue

that hand-to-mouth households have different intrinsic preferences for consumption.24

Government and Monetary Policy Following Bayer et al. (2020) and Ferriere and Navarro (2022),

the progressivity of the income tax schedule is ϱ = 0.10, which closely approximates the US tax

code. The value of ϑ = 0.7 is chosen such that the average labor income tax rate is about 23%,

which is in the range of plausible values in the literature. For this particular value of ϑ, govern-

ment spending accounts for 15% of GDP. The corporate income tax is set to the statutory level

τD = 0.21. We assume a steady-state gross inflation of π = 1 and a real annual interest rate of

rb = 4%. As such, BG adjusts at the steady-state mostly through the discount factor βM.

Unemployment insurance is calibrated as follows. The replacement rate ς is set to 40% of

previous labor income, which is the average value across US states between 1990 and 2020. The

duration of UI in the US is typically 6 months during normal times. As the model period is a

quarter, we set ρS = 0.5. Following McKay and Reis (2016), the unemployment benefit cap ς

represents 66% of the average income, and safety-net transfers Tu are set to match 1.02% of GDP.

Lump-sum transfers are T = 0 in the benchmark economy.

Finally, we follow the literature and assume that the central bank follows a Taylor rule with

corresponding weights on inflation ϕπ = 1.5 and output ϕY = 0, respectively.

Technology and Innovation The labor share is set to α = 0.4 to replicate a labor share in total

revenues of roughly 70%. We follow Ferriere and Navarro (2022) and set ϵ = 7, which corresponds

24Kaplan and Violante (2022) show that ex-ante heterogeneity through stochastic discount factors mimics wealthy
hand-to-mouth households and generates reasonable average MPCs; however, it understates the wealth of households
in the middle of the distribution. We show below that our model replicates the wealth distribution reasonably well
through the margin of innovation investment and associated returns.
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to a union’s markup of 16.7%. The wage adjustment cost θ is 200 to match a wage NKPC slope,

ϵ/θ, of 0.035. Later on, we will assess the sensitivity of our results when varying the NKPC slope.

A successful innovation arrives at a Poisson rate with px(x) = 1 − exp(−γx), where 1/γ

reflects the average time length to create an innovation. The parameter γ is ultimately linked to

the elasticity of realized innovations to innovative investment expenditures. According to p. 2241-

2242 in Jones (2022), Akcigit et al. (2022) is currently the most thorough paper estimating this elasticity

for inventors, and they robustly find high elasticities. For example, using panel data for US states since

1940, they find macro elasticities of invention (patents, citations, and number of inventors) with respect to

top marginal keep rates ranging from 0.5 to 1.5.25 We focus on their estimate for corporate taxes as

there is a direct mapping to dividend taxes in our model. They report an elasticity of new patents

by "corporate inventors" to corporate income taxes of about 0.49. According to their findings,

this value constitutes a conservative lower bound on the effects of taxation on overall patenting

activities. For example, looking at the elasticity of patents to the personal income net-of-tax, they

find an estimate of about 0.8. Finally, we assume that innovation costs are linear, i.e., ψ(x) = x.

We set the share of potentially innovative entrepreneurs to ΛE = 0.10, which corresponds

roughly to the share of entrepreneurs in the US. The quarterly depreciation is δA = 0.03, i.e.,

≈ 12.6% annually. We assume that the innovation shock ι is Gaussian, i.e., Fι(ι) ∼ N (1, σ2
ι ),

where the variance σ2
ι = 0.0225 induces a Pareto law for labor income of about 1.7, consistent with

Piketty and Saez (2014). Finally, the step-size η = 0.5 pins down an annual growth rate of 2%.

Labor Market and Earnings Incidence We use the panel dimension of the Current Population

Survey (CPS), that includes relevant statistics of the US labor market in waves from 1989 to 2022.

We consider all respondents aged between 20 and 65 and do not restrict the analysis to house-

hold heads. We classify workers into wage bins, which correspond closely to the productivity

bins h in the model. Wages of unemployed individuals are not observed in the CPS. To cir-

cumvent this issue, we extrapolate their wages based on the individual’s occupation, state, ed-

ucation, sex and age. We compute the long-run steady-state job-finding rate for each h-group,

Pe(W|{US, UL}; h), and substitute those values for their model counterparts. Steady-state job-

separation rates P̃e({US, UL}|W; h) are pinned down, given the job-finding rates, such that steady-

state unemployment rates for each h-group correspond to their long-run average in the CPS. The

take-up rate ΛS is calibrated to match a long-run insured unemployment ratio of 3.0 (total insured

unemployed workers over the population of covered workers).

Off the balanced growth path, we parameterize the labor market as follows. As
∫

h hdFh(h) = 1,

we observe total employment ∆Lt, average hours per h-productivity ∆ℓh
t , and total hours per h-

25Moreover, according to p. 381 in Akcigit et al. (2022), the majority of the macro effect of personal taxation appears to
result from reduced innovation at the individual level, rather than through shifting the location of innovation from one state to
another. That statement reflects that individual elasticities appear to be quite substantial.
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productivity ∆Lh
t

h in the CPS. We use these series to determine adjustments in the average number

of hours worked per individual, i.e., ϕ(h) = ∆ℓh
t (1−uh)

∆Lh
t /h

, due to fluctuations in total amount of hours

worked. This measure varies between 0.17 to 0.32 and displays the lowest value at the bottom of

the income distribution, meaning that fluctuations in the extensive employment margin are pre-

dominant at the bottom of the income distribution. Moreover, we calibrate the incidence according

to µ(h)
h =

∆Lh
t /h

∆Lt
. Consistent with evidence in Guvenen et al. (2017), Broer et al. (2021b) and Patter-

son (2022), we find that the total hours at the bottom of the income distribution disproportionally

react to fluctuations in aggregate hours. Table 3 below reports the aforementioned statistics.26

Table 3. Labor market statistics across h-groups.

Incidence Steady-state labor market statistics

h-group wage bin µ(h)/h ϕ(h) 1 − uh Pe(W|{US, UL}; h) P̃e({US, UL}|W; h)

h1 [0.00 : 0.16] 1.61 0.22 0.107 0.497 0.078
h2 [0.16 : 0.38] 1.11 0.18 0.069 0.487 0.026
h3 [0.38 : 0.62] 1.30 0.17 0.053 0.481 0.026
h4 [0.62 : 0.84] 0.64 0.22 0.041 0.475 0.022
h5 [0.84 : 1.00] 0.28 0.32 0.028 0.461 0.009

The last two columns of Table 3 concern the extent to which job-separation and job-finding

rates react consistently with the observed unemployment rate. Using equation (12), we first solve

for the job-separation rates being consistent with fluctuations in the unemployment rate uh
t , while

keeping job-finding rates fixed at their steady-state levels. We label these separation rates pu,t(h).

They represent changes in job-separation, which would generate exactly the fluctuations in un-

employment rates. To account for the fact that part of unemployment rate fluctuations is due to

variations in job-finding rates, we assume that actual separation rates are P̃e,t({US, UL}|W; h) =

ϕs pu,t(h) + (1− ϕs)P̃e({US, UL}|W; h) ∀h, where ϕs is the extent to which separation rates account

for fluctuations in unemployment rates. Given these actual separation rates, we then solve for the

job-finding rates consistent with the unemployment rates using equation (12). Following Krusell

et al. (2017), we assume that job separations account for one third of total variation in unemploy-

ment rates, i.e., ϕs ≈ 0.3. As such, the model captures sufficiently well the unemployment risk

and, importantly, its persistence and dynamics.

4 Inspecting the Model’s Properties

We shall now investigate the properties of the quantitative model and highlight its performance

with respect to targeted and non-targeted moments.

26Figure 12 in Appendix C.3 displays cyclical variations of unemployment rates and hours worked across h-groups.
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4.1 Long-Run Properties: Income and Wealth Inequality

We first document endogenous moments concerning the distribution of income and wealth in

Table 4. The benchmark model generates reasonably high concentrations of income and wealth.

This feature can be traced back to the presence of innovators and is amplified by random growth

in the innovation process through the idiosyncratic shock ι. Removing the random growth compo-

nent limits the concentration of wealth by lowering the concentration of income from innovative

rents. In this case, and relative to the benchmark economy, the Pareto coefficient of the income

distribution would increase from 1.7 to 2.0.27

In the model, 10% of the population are entrepreneurs. Innovative entrepreneurs are the main

driving force behind the high income and wealth concentration. Absent entrepreneurs (ΛE = 0),

the model does not generate enough inequality. We define an innovative entrepreneur in the

model as an entrepreneur who effectively holds a positive number of innovations, i.e., a > 0.

Using this definition, it turns out that only 4.5% of the population are innovative entrepreneurs.

Therefore, our model implies that only a small proportion of the population is classified as innova-

tor. How does this fact compare to the data? The Global Entrepreneurship Monitor documents that

among the 11% of the US owner-managed new businesses (in the population aged between 18-64)

around 35% indicate that their product or service is new to at least some customers, and that only

few or no alternative businesses offer an equivalent product.28 Extrapolating these numbers to

the whole population of entrepreneurs would result in a fraction of innovative entrepreneurs of

3.85%. Interestingly, the 2017 US Annual Business Survey (ABS) provides information on 4.6 million

active for-profit companies that are publicly or privately held. Around 43% of these companies

introduced an innovation during the years 2015-17. Assuming that a single business owner corre-

sponds to a single firm and given that the population of business owners is around 13.3% in the

US, according to the Survey of Consumer Finance, this would imply a fraction of business owners

of innovative firms of 5.7%. This number is likely an upper bound, as business owners could run

multiple innovative firms.

The model also generates a strong endogenous sorting of entrepreneurs at the top of the in-

come and wealth distribution. The share of innovative entrepreneurs within the top 20% and

top 5% wealthy households is 27% and 45%, respectively. While not being directly comparable

due to the lack of a counterpart for "innovative" entrepreneurs, our results are consistent with the

empirically observed sorting of self-employed and/or business owners. Cagetti and De Nardi

(2006) document that the top 5% comprises 68% of business owners or self-employed, and 39%

if one only considered self-employed business owners. Finally, it is worth mentioning that our

model generates a positive sorting between innovative entrepreneurs and income or wealth. In

27See Benhabib et al. (2011) for a discussion on how random growth models can generate Pareto distributions.
28The data can be retrieved here: https://www.gemconsortium.org/data.
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Table 4. The distribution of income and wealth.

Income Wealth

Gini share going to top (in %) Gini share going to top (in %)

1% 10% 20% 50% 1% 10% 20% 50%

US data a 0.54 17 42 58 85 0.82 38 73 86 98
Benchmark model 0.46 15 38 52 80 0.81 35 71 85 99
No innovation shock (σ2

ι = 0) b 0.45 12 36 51 79 0.72 17 57 75 97
No entrepreneurs (ΛE = 0) c 0.24 2 19 35 68 0.73 11 56 77 98

a Statistics for income and wealth come from the World Inequality Database (WID) and the adjusted
Survey of Consumer Finance (1989-2021) from Gaillard and Wangner (2022), respectively.
b Recalibrated to match a growth rate of 2% annually using the inverse innovation arrival length γ.
c Recalibrated to match the same average MPC and debt-to-GDP ratio using discount factor βM and ∆β.

this sense, our model is consistent with the causal link put forward in Aghion et al. (2019).

4.2 Short-Run Properties: Consumption, Investment, and Income Exposure

We now focus on the joint distribution of MPCs and the earnings incidence over the business

cycles, which is a key driver of aggregate demand amplification. Additionally, we assess the

distribution of MPIs and its sensitivity to tax changes, which affects the long-run transmission of

transitory stabilization policies. We compute MPCs and MPIs as follows

MPC(a, b, s) =
∂c(a, b, s)

∂b
, MPI(a, b, s) = 1dE=1

∂x(a, b, s)
∂b

.

Table 5 displays the model-implied MPCs for several groups of individuals. We find that un-

employed individuals have the highest MPCs. This finding is in line with the view of long-run

unemployment as a "tag" for high MPCs, as highlighted in Kekre (2022). Long-run unemployed

workers exhibit an MPC which is, on average, three times larger than the average MPC. In con-

trast, innovative entrepreneurs have the lowest MPC, about four times smaller than the average.

As such, the implied fraction of hand-to-month households – defined as households at the bor-

rowing limit b = 0 – is roughly 25%.

Table 5. Model-generated quarterly MPC and mean wealth across household groups.

GROUP QUATERLY MPC MEAN WEALTH

Overall Population 0.18 (targeted) 1.0 (normalized)

Unemployed workers 0.38 0.76
Short-run insured unemployment 0.21 0.80
Long-run uninsured unemployment 0.57 0.71

Employed workers 0.16 1.01
Innovative entrepreneurs 0.04 10.15

How can we interpret the distribution of MPCs among the different groups? In line with Car-
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roll et al. (2017) and Ganong and Noel (2019), we obtain that the average MPC is much higher

among unemployed individuals. This is the case as MPCs are decreasing in wealth due to the

presence of a borrowing limit, and unemployed households are more likely to be of low labor pro-

ductivity with little wealth. In Figure 2, we display the distribution of MPCs and MPIs across the

income and the wealth distribution. Overall, MPCs fall along the income and wealth distribution.

As argued in section 3, this feature is highly relevant for the strength of the market size effect.

Figure 2. Model generated MPCs and MPIs across the income and wealth distributions.
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Legend (Boxplot): Rectangle borders delimit the 1st and 3rd quartile, and the bold bar displays the mean.

We find that MPIs follow a hump-shaped pattern, i.e., they are the highest at the middle-

top of the wealth and income distribution. On the one hand, due to the selection of innovative

entrepreneurs at higher income and wealth levels, MPIs tend to increase with wealth and income

in the cross-section. On the other hand, the step innovation process generates a form of decreasing

returns to scale at the top of the wealth distribution. Intuitively, for a given innovative investment,

gains from additional investments decrease with wealth as ∂I(a,b,s,x)
∂b < 0. As such, MPIs decrease

beyond a certain income and wealth threshold.
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4.2.1 Income Incidence As shown in Table 3, the model-implied earnings incidence decreases

along earning bins, consistent with recent empirical evidence in Broer et al. (2020) for mone-

tary policy shocks based on German administrative data. Because of returns to innovative en-

trepreneurial activities, the total income incidence may however differ from the labor income in-

cidence. To measure this discrepancy, we compute the incidence of aggregate income deviations

on different individual total income bins by β(κ) = ∆yκ
∆y , where ∆yκ denotes the logarithm of

income growth in bin κ of total income, and ∆y denotes the logarithm of total income variations.

By construction,
∫
κ ∆yκdFκ(κ) = ∆y holds true.

Figure 3 shows that the total income incidence is U-shaped; while the decrease at the bottom

is driven by a declining labor income incidence, the increase at the top is driven by the procyclical

nature of innovative rents together with the self-selection of innovative entrepreneurs at the top of

the distribution.29 The U-shaped pattern is specific to the usage of nominal wage rigidity. Under

sticky prices, the upper incidence on total income would decrease as profits are countercyclical.

Figure 3. Household betas: labor income and total income incidence.
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Remark: The incidence is computed at impact from a 25-basis point surprise in the nominal interest rate.

4.2.2 Tax-Elasticity of Innovative Investment Finally, we investigate how innovative invest-

ment reacts to tax changes. Table 6 considers the partial equilibrium elasticity of growth, inno-

vative investment and top income inequality with respect to the dividend tax rate τD and the

personal income tax progressivity ϱ. Higher taxes substantially lower incentives to innovate and

the resulting income inequality. A 1% increase in dividend taxation decreases the top 1% income

share by 0.064%. In terms of growth, this increase lowers annual growth by 0.12 percentage points.

Notice that we do not distinguish between labor income taxes or capital income taxes, but rather

focus on the overall income tax progressivity or profit taxes. This assumption raises the question

on how entrepreneurs report their taxable income. According to Smith et al. (2019), top earners

29The latter feature is, for instance, emphasized in Moll et al. (2022). They notably show that gains from automation
overproportionally benefit households at the top of the income distribution.
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derive most of their income from entrepreneurial business income (e.g., pass-through profits) that

is taxed as ordinary income rather than from financial capital, which supports the approach taken

in our paper. Our results is also closely linked to recent contribution by Jones (2022), who shows

that taxation affects income inequality to the extent that it lowers the accumulation of innovative

investments and, thus, the tail of distributed rents from innovation.

Table 6. Model response to dividend and income taxation in partial equilibrium a.

INDICATOR ELASTICITY RESPONSE TO AN INCREASE OF TAXATION

Dividend taxation τD Income tax progressivity ϱ

Annual net growth rate gA
t+1 −1.19 −0.79

Innovative expenditure Ψt −0.47b −0.33
Top 1% income share −0.06 −0.04
Fraction of innovative entrepreneur −0.18 −0.02

a The elasticity is computed based on a one percentage point increase in τD from 0.20 to 0.21,
and an increase in ϱ from 0.10 to 0.11.
b Targeted to generate the same empirical elasticity as in Akcigit et al. (2022) using patenting
as proxy for innovation expenditures.

5 Quantitative Analysis of Macroeconomic Stabilization Policies

The central argument of this paper is that the income incidence of macroeconomic stabilization

policies across households with heterogeneous MPCs and MPIs shapes aggregate short- and long-

run outcomes. In this section, we use our analytical results to shed light on the efficacy of stabi-

lization policies through the lens of the quantitative environment. We begin by analyzing the

transmission of monetary policy in section 5.1, and then study an often implemented form of

fiscal redistribution through discretionary extensions in unemployment benefits in section 5.2.

5.1 The Transmission of Monetary Policy

To evaluate the role of household heterogeneity for the transmission of a monetary policy, we com-

pare the aggregate effects in the full HANK-GS economy to the same economy with: (1) household

heterogeneity but a uniform earnings and unemployment incidence, i.e. µ(h) = ϕ(h) = 1 ∀h; (2)

household heterogeneity in earnings and unemployment but not in the entrepreneurial status, i.e.

ΛE = 1.0; (3) a representative household.30 The first comparison is designed to measure the effects

of a higher degree of cyclical income inequality, while keeping the structure and parameters of the

model identical. The second comparison isolates the cost-of-funds channel for innovative invest-

30Our representative household economy follows the exact same macro-block as the quantitative HANK-GS with
two differences. First, we set the idiosyncratic components to a unique value, i.e. h = h, β = β, and e = W. Moreover, all
individuals are entrepreneurs, i.e. dI = 1. Second, we recalibrate β and γ to match the same aggregate moment for the
steady state debt-to-GDP ratio and the technology growth rate. Our results are robust to using different re-calibration
strategies, including for example fixing γ but changing η to match the same aggregate growth rate.
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ment. Finally, the third comparison aims at quantifying the effects arising from the presence of

inequality per se. Throughout, we consider a monetary surprise, that all else equal, would increase

the nominal interest rate on liquid bonds by 25-basis points in the first quarter, i.e. ϵmt = 0.0025.

The persistence of the shock is set to ρm = 0.65. Until further notice, we assume that lump-sum

transfers adjust to balance the government budget constraint.

Result 1. The monetary policy transmission in the quantitative economy has the following properties.

(a) The benchmark HANK-GS economy amplifies short-run output Yt/At but stabilizes technology growth

gA
t+1 compared to the representative household economy. The result is driven by different magnitudes

in the average MPC and MPI.

(b) A higher degree of cyclical income inequality amplifies short-run output Yt/At, and is close to be

neutral for technology growth gA
t+1. The result is robust to a wide range of shock persistence levels, the

dynamic structure of the NKPC, and the government financing scheme.

5.1.1 HANK-GS versus RANK-GS We begin with statement (a) of Result 1 and measure po-

tential scars from inequality, as defined in Definition 1. Figure 4 displays the impulse responses for

key aggregate variables under both the baseline HANK-GS economy and its RANK-GS counter-

part. We find that household heterogeneity amplifies short-run output while it stabilizes technol-

ogy growth. Computing the output and technology growth multiplier, My and Mg, our results

indicate a short-run output amplification from inequality of about 0.07 percentage points and a

long-run stabilization from inequality of about 0.15 annualized percentage points at impact.

To understand the amplification of technology growth in the representative agent economy, it

is useful to compare the propagation to a version of the HANK-GS economy in which all agents

are entrepreneurs (only 75% of them are actually innovative entrepreneurs). In this case, we find

that technology growth is amplified relative to the baseline economy. The result is driven by the

fact that a variation in the overall returns to innovative investment goes along with a stronger cost

of funds effect. Innovative entrepreneurs are now relatively poorer and are thus more prone to

adjust investments following an income shock in order to smooth consumption. In other words,

the responsiveness of investment increases in this economy. In the RANK-GS economy, this effect

generates – despite a lower market size effect due to a low average MPC – short-run stabilization

but long-run amplification.

5.1.2 The Effects of Cyclical Income Inequality The previous result that the benchmark HANK-

GS economy amplifies short-run output but stabilizes technology growth relative to the RANK-GS

economy may be driven by key structural differences between those two economies. We therefore

perform a second experiment in which we isolate the role of cyclical income inequality for the

transmission of monetary policy. The advantage of this approach is that structural parameters of
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Figure 4. The transmission of monetary policy under HANK-GS.
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Note: Output, consumption and investment are expressed in percentage deviation from steady state. The
real interest rate, inflation, and technology growth are in annualized percentage point deviation.

the steady-state are preserved, while only specific components regarding the heterogeneous inci-

dence in aggregate income fluctuations vary. Conceptually, this experiment is linked to section

2.6, as it amounts to trace out the role of varying cyclical earnings inequality and to locate the

economy within the diagram of Figure 1. Table 7 displays the results under different scenarios.

In the light of section 2.6, countercyclical inequality has an ambiguous effect on technology

growth. On the one hand, investors are, on average, less exposed to aggregate fluctuations through

their labor income and keep investing into innovation, which stabilizes technology growth. On

the other hand, the amplification of the output response pushes towards a stronger market size

effect. We find that the latter effect dominates. A higher incidence, through both hours worked

and unemployment fluctuations, amplifies the short-run output multiplier but increases the long-

run technology loss. The interaction between heterogeneous unemployment risk and an unequal

incidence on hours worked is shown to largely amplify the short-run output response. This find-

ing is robust to the dynamic properties of the NKPC, i.e. whether we consider a static NKPC as

in section 2 or a forward-looking NKPC. Nevertheless, our results indicate that a higher degree

of countercyclical income inequality plays a minor role for the long-run transmission, given the

benchmark level of shock persistence.
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Table 7. Decomposition of impact multipliers to an anticipated monetary policy shock.

MODEL Output Technology

Benchmark economy −0.824 −0.114
(a) No incidence with unemployment −0.797 −0.117
(b) No incidence without unemployment −0.565 −0.109

Benchmark economy with static NKPC −0.788 −0.109
(a) No incidence with unemployment −0.759 −0.112
(b) No incidence without unemployment −0.555 −0.108

Note: Output multipliers are expressed in %-deviation from the steady-state.
Technology multipliers are additionally denoted in annualized pp-deviation.
Government budget closed by adjusting Gt. Case (a) ensures a uniform inci-
dence according to µ(h) = 1.0, ϕ(h) = 0.2, while case (b) uses µ(h) = ϕ(h) = 1.0.

5.1.3 The Interaction between Shock Persistence and Cyclical Inequality We have thus far

analyzed the role of cyclical inequality while keeping the magnitude and the persistence of the

monetary surprise fixed. In Propositions 7 and 8, however, we have argued that the effects of

cyclical income inequality on the short- and long-run propagation of monetary shocks crucially

depend on the persistence. In Figure 5, we recompute the transition path under a static and a

forward-looking NKPC and under differing financing schemes of the government budget con-

straint, i.e. lump-sum taxes, government spending, and tax progressivity. We compare our bench-

mark economy to the one without earnings incidence and no unemployment (µ(h) = ϕ(h) = 1.0).

Under the static NKPC (top row), a higher persistence induces countercyclical income inequal-

ity to decrease the impact multipliers of output unambiguously. The effect is nonlinear and the

strongest if the budget constraint is balanced by cutting government spending, and weakest un-

der rising tax progressivity. The former arises as cutting government spending reduces aggregate

demand even further and, thus, amplifies the initial contraction. The latter arises as tax progressiv-

ity lowers the tax burden on high-MPC households and, thus, reduces the short-run contraction.

Moreover, there arises a unique threshold on the persistence below (resp. above) which counter-

cyclical income inequality stabilizes (resp. amplifies) technology growth. At this point, the re-

distributive effects of monetary policy though the cost of funds and the market size effect exactly

offset each other. While there is no threshold for tax progressivity financing, the threshold is high

for lump-sum and government spending adjustments, at a level of ρLR
m = 0.60 and ρLR

m = 0.70,

respectively. Intuitively, higher tax progressivity generates an additional behavioral tax effect by

lowering innovative investment returns – which relatively strengthens the market size effects –

such that the counterbalancing cost of funds effect is small.

In the case of a forward-looking NKPC (bottom row), the effects of a higher degree of coun-

tercyclical income inequality depend non-trivially on the persistence of the monetary tightening.

A higher persistence generates a U-shaped pattern; countercyclical income inequality decreases
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Figure 5. The role of persistence for the short- and long-run transmission of monetary policy.
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Note: The top row displays results for a static NKPC and the bottom row for a forward-looking NKPC.
Results are expressed in percentage deviation from the economy with no incidence for output and in annu-
alized percent point deviation from the economy with no incidence for technology growth.

output for low persistent levels and increases it for high persistent levels. This effect is strongest

when government spending adjusts. The U-shape arises as wage inflation decreases that strongly

for persistence levels above a certain point such that the Taylor rule endogenously offsets parts

of the initial contraction by lowering nominal and real interest rates. This adjustment generates a

complex response of technology growth as it limits the crowding out of private investment. For

low levels of persistence, the cost of funds effect dominates and stabilizes technology growth. For

moderate values, the market size effect dominates and countercyclical income inequality ampli-

fies technology growth. Finally, the interest rate response dominates for high persistence levels,

which stabilizes technology growth.

Our results highlight a non-trivial dimension through which the persistence of monetary pol-

icy may affect both the short- and long-run output response, depending on how the government

budget is balanced. More generally, while the effects of an unequal income incidence are limited

for moderate persistence levels, they are substantial for high persistence levels.31

31Our findings are in line with Alves et al. (2020) who document in a two-asset HANK economy that an unequal
income incidence has only small effects on the propagation of monetary policy shocks. Contrary to them, we highlight
that there arise substantial and nonlinear effects of an unequal income incidence for high persistence levels.
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5.2 The Role of Social Insurance and Tax-and-Transfer Programs

We now shift our focus to assess the short- and long-run transmission of discretionary social insur-

ance and tax-and-transfer programs as macroeconomic stabilization policies. Such policies reduce

countercyclical consumption and income inequality by alleviating individual hardship.

As our leading example, we study the aggregate effects of temporary UI duration extensions.

This policy is one of the most frequently implemented and analyzed macroeconomic stabilizers

in the United States (see Nakajima (2012), McKay and Reis (2016), Gaillard and Kankanamge

(2022) or Kekre (2022) among many others). This choice facilitates to discuss our results in light

of previous findings and unpack how the joint analysis of household heterogeneity, aggregate

demand and innovative investment alters the efficacy of such a policy.

Policy Experiment Over the past decades, the US Congress has passed several UI extensions that

were automatically activated in periods of economic downturns, contingent on the economy-wide

level of unemployment. At the federal level, the Temporary Extended Unemployment Compensa-

tion (TEUC) program was enacted in March 2002 and the Emergency Unemployment Compensa-

tion Act (EUC08) in June 2008. The EUC08 has been complemented by extended unemployment

benefits (EB) programs at the state level that provided further UI extensions.32 Following the

former two programs, the maximum duration of eligible unemployment insurance benefits was

massively prolonged, far beyond the standard coverage of 26 weeks during normal times. As

such, UI durations reached effectively up to 99 weeks by the end of 2009.

To account for the extension in UI durations within our setup, we assume that the probability

to stay in insured short-run unemployment (i.e., ρS) mimics the unemployment benefits duration

during the Great Recession. This corresponds to an increase from two quarters (26 weeks) in the

model to almost eight quarters (99 weeks), i.e., we temporarily increase ρS from 0.50 to 0.87 with

a corresponding persistence of 0.85. As before, we consider different financing instruments, i.e.,

lump-sum taxes, government spending, increasing income tax progressivity and additional gov-

ernment debt. In reality, the ratio of total federal public debt over GDP went up by 20 percentage

points after the Great Recession. Additionally, Bayer et al. (2020) provide empirical evidence that

the degree of income tax progressivity has increased in between five to ten percent.

We run three main experiments. First, we investigate the aggregate short- and long-run effects

to a temporary extension in the UI duration. We show that the respective financing instrument

of this stabilization policy has drastic repercussions on long-run technology growth. Second, we

quantify the forces put forward in Proposition 9 and focus on income tax policies to finance the UI.

32Moreover, the American Recovery and Reinvestment Act of 2009 granted further transfers to low income earners
and unemployed individuals (such as food stamps), in addition to the unemployment insurance extensions. We focus
on the case of UI extensions only in this experiment. In a sensitive analysis, we show similar findings for safety-net
transfers.
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We show how the degree of wage stickiness and the tax incidence along the income distribution

substantially alters the propagation in this case. Our results are summarized below.

Result 2. The UI transmission in the quantitative economy has the following properties.

(a) When extensions in UI duration are financed by lump-sum transfers or debt, short-run output and

technology growth increase. Financing via cutting government spending is close to be neutral for

short-run output and long-run technology growth.

(b) In the benchmark economy, financing via higher income tax progressivity is beneficial for short-run

output but harms long-run technology growth such that the policy becomes contractionary after two

years. If demand effects are strong through a high wage stickiness with NKPC slope below ϵ/θ =

0.023, progressive redistribution increases short-run output and long-run technology growth. On the

contrary, if demand effects are weak with NKPC slope above ϵ/θ = 0.23, progressive redistribution

decreases short-run output and long-run technology growth.

(c) The joint distribution of MPCs and MPIs provides a rationale for taxing middle-class incomes. The

result is in sharp contrast to economies with exogenous growth or flexible wages. Taxing high-incomes

is always beneficial in economies with exogenous growth and sticky wages. Taxing low-incomes is

always beneficial in economies with endogenous growth and flexible wages.

5.2.1 The Importance of the UI Financing Scheme. Proposition 9 highlighted that there arise

three regimes after an increase in tax and transfer generosity: a regime in which short-run output

and technology growth increase; a regime in which short-run output increases but technology

growth decreases; and a regime in which both short-run output and technology growth decrease.

In which of these regimes does a temporary extension in UI duration fall? How does the answer

to the previous question depend on the financing scheme in place?

We gather the impulse responses to a temporary extension in UI duration in Figure 6. If the

policy is financed by reducing government spending, we find that the reduction in the demand

from lower government spending outweighs the increase in demand from private consumption.

As such, normalized output Yt/At falls and unemployment increases after two quarters. When

the UI shock is financed by raising debt, lump-sum or progressive taxes, output increases. The

strongest boost arises under progressive taxation, as the bottom of the income distribution with

high MPCs does not bear any additional tax incidence in this case. Higher income tax progres-

sivity, however, is at the cost of a reduction in technology growth as incentives to innovate are

distorted. As a result, progressive income taxes generate a trade-off between short-run stabiliza-

tion and long-run growth. Finally, under debt financing, the aggregate effects on output and

technology growth are the highest. Our results, thus, provide a rationale for debt financing.
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Figure 6. Aggregate effects of temporary extension in duration of UI benefits.
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Remark: The anticipated shock in UI duration follows an AR(1)-process, i.e., ρS
t = 0.85ρS

t−1 + 0.15ρS
ss + ϵS

t ,
where the initial shock size is given by ϵS

0 = 0.87. Output and UI payment are expressed in percentage
deviation from steady state. The growth rate and unemployment rate are in annualized percentage point
deviation. The Gini coefficient is in deviation from steady-state.

How do short- and long-run effects compare? To put our results into perspective, we com-

pute the output multiplier in the non-stationary economy after one year, and the long-run output

multiplier relative to the counterfactual unshocked economy.33 We present our results in Table 8.

With respect to progressive income taxes there are several insights worth mentioning. First, there

arises a strong short-run complementarity between aggregate demand and technology growth,

as the one year multiplier under the benchmark economy is larger than the one without endoge-

nous growth. Second, the presence of nominal wage rigidity gives rise to a short-run expansion

in output, which significantly mitigates the long-run output loss relative to a counterfactual flex-

ible wage economy. As a result, the long-run multiplier is in absolute value four times smaller

in the sticky wage economy, and the temporary extension in the duration of UI benefits becomes

33Let us denote ∆policyt+s = UI paymentt+s − UI payment and output in the counterfactual unshocked economy
by YP

t . The short-run multiplier after one year (T = 4) and the annualized long-run multiplier (T = ∞) are defined by

SR-output-multiplier ≡ ∑T=4
s=0 Yt+s − YP

t+s

∑T=4
s=0 ∆policyt+s

, and LR-output-multiplier ≡
4 × (Yt+∞ − YP

t+∞)

∑∞
s=0 ∆policyt+s

.
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contractionary only after two years (i.e., 8.5 quarters).

We compare these results to the ones obtained under alternative financing schemes. Under

lump-sum taxes, positive demand effects are relative weakened and the short-run output multi-

plier raises sightly less. As innovation decisions are, however, less distorted, the rise in demand

generates positive long-run gains from this policy. In this case, a short- versus long-run stabiliza-

tion tradeoff does not emerge. Finally, if the government cuts spending to finance the UI extension,

overall aggregate demand contracts and output falls after two quarters. As income inequality is

countercyclical, this policy redistributes towards entrepreneurs such that market size and cost of

funds effect go in opposite directions and technology growth is almost insensitive to the policy.

Finally, debt financing generates the strongest long-run technology growth effects.

Table 8. Decomposition of aggregate effects from temporary extension in duration of UI benefits.

Financing-Instrument Short and Long-Run Output Multiplier Time T∗

Benchmark Flex. Wage Exo. Growth Flex. + Exo.

1 year t → ∞ 1 year t → ∞ 1 year t → ∞

Progressive tax 1.13 −0.17 −0.53 −0.70 0.93 0.00 −0.06 0.00 8.50
Lump-sum tax 0.89 0.12 −0.21 −0.13 0.63 0.00 −0.05 0.00 n.a.
Government spending −0.02 0.03 −1.15 −0.13 −0.30 0.00 −0.86 0.00 n.a.
Debt 0.74 0.22 −0.31 −0.25 0.90 0.00 −0.04 0.00 n.a.

Remark: When there arises a trade-off between short-run output gains and long-run losses, T∗ denotes the
time horizon at which short-run gains are neutralized.

5.3 A Detailed Look at the Incidence of Stabilization Policies

Our quantitative findings provide a novel perspective on the efficacy of progressive stabiliza-

tion policies. When neglecting the long-run propagation through technology growth, transi-

tory progressive income redistribution turns out to be a successful stabilization policy in HANK

economies. It does not only alleviate individual hardship during economic downturns, but also ef-

fectively stimulates aggregate demand by redistributing income to households with a high MPC.

Kekre (2022), for instance, documents that a longer UI duration, that is financed with lump sum

taxes on employed workers, increases aggregate demand, reduces unemployment and stabilizes

the economy during recessions. Related, Ferriere and Navarro (2022) show that government

spending multipliers are larger when they are financed by progressive income taxes. Our results

confirm their findings regarding the short-run effectiveness of such policies. In contrast to them,

another literature strand emphasizes that progressive income taxes lower innovation incentives

and long-run growth (Jaimovich and Rebelo, 2017; Jones, 2022). Our analysis synthesizes both

strands and points toward a short- versus long-run stabilization tradeoff as higher progressivity

increases aggregate demand but distorts innovative investment decisions.
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5.3.1 The Role of Nominal Rigidities As shown above, one of the key forces through which fis-

cal redistribution matters for the short- and long-run propagation of UI extensions is the strength

of demand effects. In light of Proposition 9, we now ask which degree of wage stickiness rational-

izes each of the aforementioned three regimes. Figure 7 (left panel) displays the impact response

of technology growth and normalized output depending on the NKPC slope. The right panel dis-

plays the implied time horizon T∗ beyond which the policy implies a permanently lower output

level relative to the unshocked economy.

Figure 7. Nominal rigidity and associated regime selection under progressive income tax financing.
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When nominal rigidities are small, an increase in UI generates both a short- and a long-run

output loss. In this case, demand effects are weak and returns to innovation decrease as the market

size decreases and tax distortions increase. When nominal rigidities are sufficiently strong, short-

run output and technology growth increase. This case arises under our benchmark calibration

and generates a tradeoff between short- and long-run output gains. This tradeoff is shown in

the right subfigure, which displays the time horizon T∗ at which the UI policy generates neither

output gains nor losses relative to the unshocked economy. Importantly, T∗ increases in the degree

of nominal wage rigidity as the latter strengthens demand effects. For high enough levels, it may

even outweigh the disincentive effects on innovation induced by higher progressive income taxes.

In this case, the UI benefit extension increases both short- and long-run output gains.

5.3.2 The Role of a Heterogeneous Tax Incidence In Figure 2, we have documented that MPCs

are, on average, high at the bottom of the income distribution, while MPIs are, on average, high

at the middle and the top of the income distribution. This suggests that the tax incidence of ad-

ditional costs from the UI extension may have large consequences on aggregate dynamics. To

validate this hypothesis, we modify the tax schedule from the benchmark economy to target spe-
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cific income groups, i.e.,

T (yd) = max
{

0, yd − ϑ
(

yd
)1−ϱ

, log(yd − y1) + y2
}

,

where y1 is a scale parameter and y2 is a time-varying constant that adjusts to balance the govern-

ment budget constraint in every period. In case of a primary surplus, we let lump-sum transfers

adjust.34 When y1 and y2 both increase, the additional tax incidence of the UI extension gradually

falls on higher income deciles. In Figure 8, we vary the scale parameter y1 to target particular

income deciles and display the resulting additional tax incidence =
taxafter change−taxbenchmark

taxbenchmark
.35 Fig-

ure 9 gathers the aggregate effects when the tax incidence falls on a particular income decile.36

We display normalized output Yt/At, technology growth gA
t+1, and the dynamics of output Yt at

different horizons. In all figures, the direction of the arrow refers to a tax incidence on a higher

income decile, i.e., in ascending order from the first to the ninth decile.

Figure 8. Heterogeneous tax incidence as a function of the scale parameter y1.
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Legend: The subfigures display the tax incidence at different income deciles when varying the scale param-
eter y1. In all cases, y2 adjusts to balance the government budget.

First, in a heterogeneous agent economy without endogenous growth and nominal wage rigid-
34Notice that the UI extension leads for the bulk of calibrations to a primary deficit.
35There are many other ways to generate a heterogeneous tax incidence, including non-linear piece-wise functions.

We illustrate our case in the Appendix C.2.2.
36In Appendix C.5, we report additional results when the tax incidence falls on the top 1% income households.
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Figure 9. Heterogeneous tax incidence and the short- and long-run effects of a temporary UI extension.
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Legend: The left panel displays the annual multipliers for normalized output Yt/At and technology growth
gA

t+1. The middle and right panels show the dynamics of the economy at different horizons. Each dot
represents the tax incidence on a targeted income decile, in accordance to Figure 8 and applied for each
model class. The arrow indicates the direction of the tax incidence toward higher income deciles. The y-
axis represents short-run output gains/losses, i.e., output deviations from the unshocked economy after one
quarter (left and middle panel) and after one year (right pannel). The x-axis represents longer-run output
gains/losses, i.e., output deviations from the unshocked economy after one quarter (left panel), after one
year (middle panel) and after five years (right panel).

ity (HA model) it is almost irrelevant whether the tax incidence falls on the bottom or the top of

the income distribution. In this case, real wages directly adjust to the UI extension and MPC het-

erogeneity is inconsequential. Second, in an endogenous growth economy without nominal wage

rigidity (HA-GS model), a higher tax incidence on the top of the income distribution decreases

both short- and long-run output. Both responses result from lower innovative investment. After

five years, the total loss relative to the unshocked economy is substantial and corresponds to an

output loss of roughly one BGP quarter. In contrast, in an exogenous growth economy with nom-

inal wage rigidity (HANK model), a higher tax incidence on the top of the income distribution

increases short-run output gains, and is, however, irrelevant for long-run dynamics. In this case,

the sole presence of MPC heterogeneity pushes toward lower taxes at the bottom of the income

distribution in order to maximize output gains.

What happens when the economy features jointly nominal wage rigidity and endogenous

growth (benchmark HANK-GS model)? In this case, more redistribution increases aggregate de-

mand, which pushes toward higher innovative investments. At the same time, however, more

redistribution tends to reduce innovation incentives such that the overall effect becomes ambigu-

ous. Quantitatively, we find that moving the tax incidence from the bottom to the top of the income

distribution generates nonlinear effects. It first increases short-run output (after one year) without
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affecting technology growth. The marginal effect on technology growth is close to zero because

the extra market size offsets the effects from higher taxes on innovation. Moreover, when the in-

cidence falls on the majority of households at the middle and the top of the income distribution,

technology growth becomes negative. Last, when the tax incidence falls mainly on innovative

entrepreneurs, both short- and long-run output fall.

Overall, our analysis suggests that neglecting either nominal rigidities or endogenous growth

leads to a misleading view on the desirability of stabilization policies that are financed by taxes.

Our results emphasize that the joint distribution of MPCs and MPIs together with the tax incidence

are necessary to fully understand the transmission of such policies. As such, we stress that a policy

which induces a tax incidence on middle-class incomes rather than the bottom-class or middle-

top-class incomes generates both short- and long-run output gains. For example, the right subplot

of Figure 9 indicates that a tax incidence on the fifth income decile maximizes output gains five

years after the UI extension. Those gains are superior to the ones achieved under lump-sum taxes.

Moreover, as seen earlier, debt-financing that is coupled to future lump-sum repayments generates

the highest long-run output gains. Hence, debt financing and the taxation of middle-class incomes

stand out as effective tools to finance stabilization policies under HANK-GS.

5.4 Robustness

In addition to the previous analysis, we have explored the robustness of our findings along sev-

eral dimensions. First, we account for the possibility that discretionary variations in the duration

of UI generosity may alter the job-posting behavior of firms and the incentives to work by lower-

ing job-finding rates. To integrate these features, we assumed that the unemployment adjustment

margin ϕ(h) increases in the duration of the UI benefits ρS. This modeling choice captures the fact

that firing costs increase under the UI policy such that fewer jobs are opened. Moreover, we as-

sumed that job-finding rates decrease in the UI duration in order to capture possible moral hazard

incentives. Under this alternative specification, short-run output still increases for a reasonable

range of job-posting and job-finding disincentive effects. Overall, the inclusion of these elements

weakens the market size effect under all financing scheme, which reduces the technology growth.

Second, we compared the relative efficacy between extensions in the UI duration, extensions in the

amount of UI benefits and an increase in safety-net transfers Tu. Our results remain qualitatively

valid and the relevant tradeoffs are preserved. Finally, we also considered a model extension in

which we allow for an extensive margin of entering entrepreneurship in the spirit of Jaimovich

and Rebelo (2017). In such a version, entry into innovative investment incurs an additional fixed

cost. This version provided qualitatively similar results, such that we focused in the main body of

the paper on a simpler setup without entry into and exit from entrepreneurship.
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6 Conclusion

Consistent with recent empirical evidence, we develop a unified HANK-GS framework in which

household heterogeneity, business cycles and long-run growth jointly interact. We apply this

framework to revisit the efficacy of discretionary macroeconomic stabilization policies. We show

that cyclical variations in income inequality, which are endogenously engendered by such poli-

cies, do no only affect output in the short-run, but may also have substantial effects on long-run

technology growth.

To derive these findings, we first laid down an analytical model that enriches a limited hetero-

geneity variant of the HANK model by endogenous growth. We identified three key statistics to

understand the role of cyclical income inequality for the long-run propagation of macroeconomic

stabilization policies: (i) the income exposure of high-MPI households, (ii) the income exposure

of high-MPC households, and (iii) the persistence of the discretionary policy. We then showed

that a regime arises in which discretionary progressive redistribution policies stabilize output and

inequality in the short-run but slow down the long-run recovery from economic downturns by

generating permanent output losses. Second, we quantitatively assessed these findings within a

full-blown HANK-GS model of the US economy. While countercyclical income inequality has only

small effects on long-run technology growth in the transmission of a monetary surprise, house-

hold heterogeneity per se stabilizes long-run technology growth relative to a representative house-

hold benchmark. Finally, we evaluated temporary extensions in the duration of unemployment

benefits during the Great Recession and showed that their long-run propagation largely depends

on the financing instrument used by the government.

This paper provides a first step to jointly assess the complex interaction between household

heterogeneity, business cycles and growth. Our analysis abstracted from numerous factors that

shape this nexus, part of which we plan to address in our own research agenda. We consider het-

erogeneity in the composition of household consumption bundles (Beraja and Wolf, 2022; Laibson

et al., 2022) as a fruitful extension, that may have important repercussions on innovative invest-

ment. A further natural direction is to explore the normative features of our framework, in partic-

ular the design of optimal tax and social insurance systems. Finally, much more empirical work is

needed to structurally identify the short- and long-run effects of (cyclical) income inequality and

stabilization policies. We leave the answers to these exciting questions to future research.
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Appendix

The Appendix is organized as follows. Appendix A contains derivations of the analytical hetero-

geneous agent New Keynesian growth economy, while Appendix B presents proofs to section 2.

Appendix OA1 discusses additional results and extensions. Finally, Appendix C presents details

on the computational algorithm as well as the model calibration of our quantitative analysis.

A Theoretical Appendix - Analytical Derivations

A.1 Competitive Equilibrium

A.1.1 Household Problem The derivation of the household problem is similar to Bilbiie et al.

(2022). The first order conditions to the maximization objective of savers are

Uc(CS
t , LS

t ) = βEt

[
(1 − λ)s

∂VS(BS
t+1, ωS

t+1)

∂BS
t+1

+ λ(1 − s)
∂VH(BH

t+1, ωS
t+1)

∂BH
t+1

]
+ ΞS

t ,

Uc(CS
t , LS

t )
qt

1 − λ
= βEt

[
∂VS(BS

t+1, ωS
t+1)

∂ωS
t+1

]
,

ΞS
t bS

t+1 = 0 ,

where the first equation is the optimality condition for bond holdings bS
t+1, the second equation

the optimality condition for stock holdings ωS
t+1 of intermediary firms, while the third equation

denotes the complementary slackness condition with Lagrange multiplier ΞS
t . Similarly, the first

order conditions of hand-to-mouth households read

Uc(CH
t , LH

t ) = βEt

[
λh

∂VH(BH
t+1)

∂BH
t+1

+ (1 − λ)(1 − h)
∂VS(BS

t+1, ωS
t+1)

∂BS
t+1

]
+ ΞH

t ,

ΞH
t bH

t+1 = 0 ,

where the first equation denotes the condition for bond holdings bH
t+1, and the second one the

complementary slackness condition with corresponding Lagrange multiplier ΞH
t . The Envelope

condition to the saver Bellman equation regarding bond holdings is

∂VS(BS
t , ωS

t )

∂BS
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=
U S
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,
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where the last equality is due to ∂BH
t+1

∂BS
t+1

= 1−s
s . Analogously, the saver Envelope condition regarding

stock holdings is given by
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t , ωS
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t
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U S
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])
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U S

c (qt + Dt)

1 − λ
.

Following similar steps, the Envelope condition for the hand-to-mouth Bellman equation is

∂VH(BH
t )

∂BH
t

=
UH

c Rt−1

λπt
+

(
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where the last equality follows because of ∂BS
t+1

∂BH
t

= 1−h
h . Imposing the insurance Equilibrium Prop-

erties 1 leaves us due to ΞH > 0 and ΞS = 0 with the Euler equation for saver households

1
CS

t
= βEt

[
Rt

πt+1

(
s

1
CS

t+1
+ (1 − s)

1
CH

t+1

)]
.

A.1.2 Union Wage Setting In this section, we provide the details regarding the derivation of

the static New Keynesian Wage Phillips curve. Differentiated labor inputs are bundled according

to a CES aggregator of the form

Lt =

 1∫
0

Lt(l)
ϵw−1

ϵw dl


ϵw

ϵw−1

, with ϵw > 1 .

The firm’s minimization problem is written as

min
{Lt(l)}l

1∫
0

Wt(l)Lt(l) s.t. Lt =

 1∫
0

Lt(l)
ϵw−1

ϵw dl


ϵw

ϵw−1

.

The corresponding first order condition is given by

−Wt(l) + ΞwL
1

ϵw
t Lt(l)−

1
ϵw = 0 ,
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which holds for each variety l and where Ξw denotes the Lagrange multiplier on the CES aggre-

gator. Considering with a slight abuse of notation two distinct varieties l and l′, we get

Lt(l) = Lt(l′)
(

Wt(l)
Wt(l′)

)−ϵw

.

Substituting the former expression back into the CES aggregator yields

Lt =

 1∫
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− ϵw
1−ϵw

.

Given that the aggregate wage index is defined by

Wt ≡

 1∫
0

Wt(l)1−ϵw dl

 1
1−ϵw

,

the above equation can be rewritten by replacing l′ with a generic l as

Lt(l) = Ld
t

(
Wt(l)

Wt

)−ϵw

.

The maximization objective of union l is thus given by

max
{Wt(l)}

ln Ct(l)− ν
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2
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− gA
)2

Yt ,

where we have directly imposed the equilibrium condition for shares, i.e. ωt+1 = ωt = 1 ∀t,

respectively bonds bS
t+1 = bH

t+1 = 0. Notice that nominal labor income of the average household is

given by

Wt(l)Lt(l) = Ld
t

Wt(l)1−ϵw

W−ϵw
t

.

The first order condition to the maximization problem is thus given by

1
Ct(l)

[
(1 − ϵw)Lt(l)

Pt
− θ

(
Wt(l)
Wt−1

− gA
)

Yt

Wt−1

]
+ νϵw

Lt(l)1+φ

Wt(l)
= 0 .

64



As unions face identical first order conditions, we presuppose a symmetric equilibrium, i.e. Wt(l) =

Wt and thus Lt = Lt(l). Multiplying through with Wt and defining gross nominal wage inflation

as πw
t ≡ Wt

Wt−1
provides us with

(
πw

t − gA
)

πw
t Yt =

ϵw

θ
Lt

(
νLφ

t Ct −
ϵw − 1

ϵw

Wt

Pt

)
.

A.1.3 Final and Intermediate Good Production Final Good. The objective of the competitive final

good producer is given by

max
{Lt,Xj,t}

Pt(ZtLt)
1−α

1∫
0

A1−α
j,t Xα

j,tdj − Pj,tXj,t − WtLt ,

with corresponding first order conditions

Wt = (1 − α)PtZ1−α
t L−α

t
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0
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j,tdj ,

Pj,t = αPt(ZtLt)
1−α A1−α

j,t Xα−1
j,t .

Intermediate Goods. Using the previous two conditions, one can write the price setting problem

of intermediate firm profits as

max
{Pj,t}

Θn
j,t = (Pj,t − Pt)Xd

j,t = (Pj,t − Pt)

(
Pj,t

αPt

) 1
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The first order condition to this problem is
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) 1
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) 1
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which can be rearranged to

1 +
1

α − 1
Pj,t − Pt

Pj,t
= 0 ⇔ αPj,t = Pt .

As a result, one obtains

Xj,t = α
2

1−α Aj,tZtLt ,

and consequently

YG
t = α

2α
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Finally, nominal profits are given by

Θn
j,t = α−1 (1 − α) α

2
1−α Pt Aj,tZtLt = ΘαPt Aj,tZtLt ,

where Θα ≡ α−1 (1 − α) α
2

1−α . Thus, real profits are given by Θj,t = Θα Aj,tZtLt. Using the results

from the price setting problem, one can restate the innovation objective as

max
{Aj,t+1}

E0
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∑
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CS
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,
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The corresponding Lagrangian becomes
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Taking the first order condition with respect to Aj,t+1 results in
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Rearranging results in

1 = βEt

[
CS

t
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(
(1 − τD

t+1)ψΘαZt+1Lt+1 + s(1 − δ)
)]

.

A.1.4 Inflation Dynamics Substituting the expression for Xj,t into the final producer labor first

order condition, one obtains

Pt =
1

(1 − α)α
2α

1−α

Wt

Zt At
,

such that one obtains

πt = πw
t

Zt−1

Zt

1
gA

t
.
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A.2 Stationary Equilibrium

The stationary equilibrium is obtained by normalizing trending variables by aggregate endoge-

nous technology growth At. As a result, it is described by the following equations.

1. Saver Euler equation gA
t+1
cS

t
= βEt

[
Rt

πt+1

(
s 1

cS
t+1

+ (1 − s) 1
cH
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)]
2. Growth equation gA

t+1 = βEt

[
cS

t
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(
(1 − τD
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)]

3. Real wage wt = (1 − α)α
2α

1−α Zt

4. Wage Phillips curve
(
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ϵw
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)
5. Fiscal transfers tH

t = τD
t ΘαZtLt

6. Hours worked LH
t = (1 − µ)L + µLt , LS

t = λ(µ−1)
1−λ L + 1−λµ

1−λ Lt ,

Lt = λLH
t + (1 − λ)LS

t

7. HtM consumption cH
t = wtLH

t +
τD

t
λ ΘαZtLt

8. Saver consumption cS
t = wtLS

t +
dt

1−λ

9. Dividends dt = (1 − τD
t )α−1(1 − α)xt − ιA

t

10. Consumption λcH
t + (1 − λ)cS

t = ct

11. LOM productivity gA
t+1 = 1 + ψιA

t

12. Monetary policy rule rt = r + ϕπ ln
(

πw
t

πw

)
+ ϵmt

13. Intermediary inputs xt = α
2

1−α ZtLt

14. Gross output yG
t = α

2α
1−α ZtLt

15. Output yt = YαZtLt

16. Resource constraint yt = ct + ιA
t + θ

2

(
πw

t − gA)2 yt

17. Inflation dynamics πt = πw
t

Zt−1
Zt

1
gA

t
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A.3 Steady State

As stated in the main body of the text, we consider a steady state that is characterized by Z = 1

and π = 1. Based on these assumptions, one obtains πw = gA such that the steady state of the

HANK-GS economy is determined recursively. The subsequent three equations determine steady

state hours worked, based on which one can recursively determine the remaining values.

gA = β
(
(1 − τD)ψΘαL + s(1 − δ)

)
,

νLφc =
ϵw − 1

ϵw
(1 − α)α

2α
1−α ,

YαL = c +
gA − 1

ψ
.

As a result, steady state hours worked are implicitly characterized by

νLφ

((
Yα − β(1 − τD)Θα

)
L +

1 − βs(1 − δ)

ψ

)
=

ϵw − 1
ϵw

(1 − α)α
2α

1−α . (16)

To see whether there exists a unique L > 0 that satisfies the previous equation, notice that

Yα − β(1 − τD)Θα = α
2α

1−α (1 − α2)− β(1 − τD)α−1(1 − α)α
2

1−α

= α
2α

1−α (1 − α2)

(
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α(1 − α)

1 − α2

)
= α

2α
1−α (1 − α2)

(
1 − β(1 − τD)

α

1 + α

)
. (17)

It can be seen that the previous expression is increasing in τD. Hence, if it is positive for τD = τD,

then it is also positive for all τD. Notice that τD is determined by ensuring positive steady state

consumption of hand-to-mouth households, which is the case if

cH = (1 − α)α
2α

1−α L +
τD

λ
ΘαL =

(
(1 − α)α

2α
1−α + α−1(1 − α)α

2
1−α

τD

λ

)
L

= (1 − α)α
2α

1−α L
(

1 +
ατD

λ

)
,

which is positive if τD > τD ≡ −λ
α . Substituting τD into (17), we obtain

Yα − β(1 − τD)Θα = α
2α

1−α (1 − α2)

(
1 − β

λ + α

1 + α

)
> 0 ,

which is strictly positive because of λ ∈ [0, 1) and β < 1. As a result, the left hand side of (16) is

strictly increasing in L. Moreover, it is zero for L = 0. As a result, there exists a unique positive L
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that satisfies (16). Based on this value, one can then determine all remaining values. Steady state

saver consumption, for instance, is given by

cS = (1 − α)α
2α

1−α L +
(1 − τD)

1 − λ
α−1(1 − α)α

2
1−α L − gA − 1

(1 − λ)ψ

= (1 − α)α
2α
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(

1 + α
1 − τD

1 − λ

)
− gA − 1

(1 − λ)ψ
.

Steady state saver consumption is positive if

τD < τD ≡ 1 +
1 − λ

α(1 − β)
+

1 − βs(1 − δ)

ψ(1 − β)ΘαL
.

Additionally, hand-to-mouth income is given by yH = cH, whereas saver income is given by

yS = cS + gA−1
(1−λ)ψ

. Importantly, notice that there exists an amount of redistribution τeq,D such that

there is no consumption inequality in the steady state, i.e. Γ = 1. Defining ξc ≡ (1 − α)α
2α

1−α L, the

redistribution level τeq,D is implicitly determined by

ξc

(
1 + α

τeq,D

λ

)
= ξc

(
1 + α(1 − β)

1 − τeq,D

1 − λ

)
+

1 − βs(1 − δ)

(1 − λ)ψ

⇔ τeq,Dαξc

(
1
λ
+

1 − β

1 − λ

)
= αξc

1 − β

1 − λ
+

1 − βs(1 − δ)

(1 − λ)ψ

⇔ τeq,Dαξc
1 − βλ

λ(1 − λ)
= αξc

1 − β

1 − λ
+

1 − βs(1 − δ)

(1 − λ)ψ

⇔ τeq,D = λ
1 − β

1 − βλ
+ λ

1 − βs(1 − δ)

1 − βλ

1

ψα(1 − α)α
2α

1−α L
> 0 .

Finally, steady state growth is positive, i.e. gA > 1, if

β
(
(1 − τD)ψΘαL + s(1 − δ)

)
> 1 ⇔ τD < 1 − β−1 − s(1 − δ)

ψΘαL
.
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A.4 Log-Linear Stationary Equilibrium

By log-linearizing the equilibrium conditions stated in Appendix A.2 around its non-stochastic

steady state, we obtain

1. Saver Euler equation ĉS
t = −(ît − Et [π̂t+1]) + s̃Et

[
ĉS

t+1

]
+ (1 − s̃)Et

[
ĉH

t+1

]
+ ĝA

t+1

2. Growth equation ĝA
t+1 = ĉS

t − Et
[
ĉS

t+1

]
+M Et

[
ẑt+1 + L̂t+1

]
−MτEt

[
τ̂D

t+1

]
3. Real wage ŵt = ẑt

4. Wage Phillips curve π̂w
t = κ

(
φL̂t + ĉt − ẑt

)
5. Fiscal transfers t̂H

t = τ̂D
t + ẑt + L̂t

6. Hours worked L̂H
t = µL̂t , L̂S

t = 1−λµ
1−λ L̂t , L̂t = λL̂H

t + (1 − λ)L̂S
t

7. HtM consumption ĉH
t = wL

cH

(
ŵt + L̂H

t
)
+ τD

λ
Θα L
cH

(
τ̂D

t + ẑt + L̂t
)

8. Saver consumption ĉS
t = wL

cS

(
ŵt + L̂S

t
)
+ d

(1−λ)cS d̂t

9. Dividends d̂t = −τDα−1(1 − α) x
d τ̂D

t + (1 − τD)α−1(1 − α) x
d x̂t − ιA

d ι̂A
t

10. Consumption λcH ĉH
t + (1 − λ)cS ĉS

t = cĉt

11. LOM productivity ĝA
t+1 = gA−1

gA ι̂A
t

12. Monetary policy rule ît = ϕππ̂w
t + ϵmt

13. Intermediary inputs x̂t = ẑt + L̂t

14. Gross output ŷG
t = ẑt + L̂t

15. Output ŷt = ẑt + L̂t

16. Resource constraint ŷt = sc ĉt + (1 − sc)ι̂A
t

17. Inflation dynamics π̂t = π̂w
t + ẑt−1 − ẑt − ĝA

t

where we have used the following auxiliary parameters:

s̃ ≡ s
s+(1−s)Γ , M ≡ gA−βs(1−δ)

gA , Mτ ≡ βτDψΘα L
gA , κ ≡ ϵw−1

θ
L

(πw)2y (1 − α)α
2α

1−α , sc ≡ c
y .
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B Theoretical Appendix - Proofs

Remark: Subsequently, we impose χ ≥ 0 throughout the proofs below.

B.1 Balanced Growth Path Steady State

B.1.1 Proof Proposition 1

Proof. The first part of the proof is similar to the proof of Proposition 1 in Fornaro and Wolf (2021).

Notice that a necessary condition for individual saver and hand to mouth consumption to be

positive is that aggregate consumption is positive. This is the case if

c =
(

Yα − β(1 − τD)Θα

)
L +

1 − βs(1 − δ)

ψ
> 0 ,

which holds true if τD > τD because of λ+α
1+α < 1. From Appendix A.3, we know that there exists

a positive employment stead state L > 0 satisfying

νLφ

((
Yα − β(1 − τD)Θα

)
L +

1 − βs(1 − δ)

ψ

)
=

ϵw − 1
ϵw

(1 − α)α
2α

1−α , (18)

as the left hand side is strictly increasing in L and takes a zero value for L = 0. Additionally,

we have the following upper tax bounds ensuring positive steady state consumption of hand-to-

mouth households, respectively savers and productivity growth

τD = −λ

α
,

τD = 1 +
1 − λ

α(1 − β)
+

1 − βs(1 − δ)

ψ(1 − β)ΘαL
,

τ̃g,D = 1 − β−1 − s(1 − δ)

ψΘαL
.

Notice that τ̃g,D < τD applies because of

1
ψ(1 − β)ΘαL

(
(1 − β)

(
s(1 − δ)− β−1

)
+ βs(1 − δ)− 1

)
<

1 − λ

α(1 − β)

⇔ 1
ψ(1 − β)ΘαL

(
−β−1 + s(1 − δ)

)
<

1 − λ

α(1 − β)
,

which holds true because of β−1 > s(1 − δ). As a result, positive consumption of saver and hand-

to-mouth households as well as positive steady state growth is guaranteed by τD < τ̃g,D, which

can be rearranged to

L >
β−1 − s(1 − δ)

ψα−1(α + λ)Θα
> 0 , (19)
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which is precisely the condition stated in the Proposition. As the left hand side of (18) strictly

increases in ν one can write L(ν) with L′(ν) < 0. As L(0) = ∞ and L(∞) = 0, there exists by

continuity an unique ν∗ such that (19) is satisfied for all ν < ν∗. Notice that the wage Phillips

curve also admits a labor steady state with L = 0 that leads however to negative steady state

growth gA < 1 and zero hand-to-mouth consumption and is therefore ruled out, i.e. the strictly

positive employment steady state is the unique steady state consistent with strictly positive con-

sumption of both households and strictly positive productivity growth. The terminal statement of

Proposition 1 follows by rewriting the aggregate resource constraint

y = λyH + (1 − λ)yS = λcH + (1 − λ)cS +
gA − 1

ψ
,

which can be rearranged because of cH = yH to

yS = cS +
1

1 − λ

gA − 1
ψ

⇔ Γy =
cS

yH +
1

1 − λ

gA − 1
ψ

1
yH = Γ +

1
1 − λ

gA − 1
ψy

y
yH = Γ +

1 − sc

1 − λ

y
yH = Γ +

1 − sc

1 − λ

(
λ + (1 − λ)Γy

)
⇔ Γy =

Γ
sc

+
λ

1 − λ

1 − sc

sc
.

As a result, income inequality Γy is strictly larger than consumption inequality Γ if sc < 1, which

concludes the proof.

B.2 Cyclical Fluctuations in Consumption and Income Inequality

B.2.1 Proof Lemma 1

Proof. The cyclicality of hand-to-mouth consumption is given by

cH
t = wtLH

t +
τD

t
λ

ΘαZtLt = (1 − α)α
2α

1−α

(
ZtLH

t + α
τD

t
λ

ZtLt

)
.

Log-linearization provides us with

ĉH
t =

1
cH

(
(1 − α)α

2α
1−α L

[
1 + α

τD

λ

]
ẑt + (1 − α)α

2α
1−α L

(
µ + α

τD

λ

)
L̂t + (1 − α)α

2α
1−α Lα

τD

λ
τ̂D

t

)
⇔ ĉH

t = ẑt + L̂t + (µ − 1)
(1 − α)α

2α
1−α L

(1 − α)α
2α

1−α L
[
1 + α τD

λ

] L̂t +
(1 − α)α

2α
1−α Lα τD

λ

(1 − α)α
2α

1−α L
[
1 + α τD

λ

] τ̂D
t

⇔ ĉH
t =

(
1 + (µ − 1)

λ

λ + ατD

)
(ẑt + L̂t)− (µ − 1)

λ

λ + ατD ẑt +
ατD

λ + ατD τ̂D
t

⇔ ĉH
t = χŷt + (1 − χ)ẑt + χτ τ̂D

t ,
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where we have defined the auxiliary parameters (χ, χτ) as

χ ≡ 1 + (µ − 1)
λ

λ + ατD , χτ ≡ ατD

λ + ατD .

It is straightforward to see that χ strictly increases in µ as λ
λ+ατD > 0 due to τD > τD. Its minimal

value is obtained by χ|µ=0 = ατD

λ+ατD which is positive if τD > 0. This concludes the proof.

B.2.2 Cyclical Income Inequality The identity for total income is given by

λyH
t + (1 − λ)yS

t = yt ,

which gives in log-linearized terms

λyH + (1 − λ)yS + λyH ŷH
t + (1 − λ)ySŷS

t = y + yŷt ⇔ ŷS
t =

yŷt − λyH ŷH
t

(1 − λ)yS .

Expanding terms results in

ŷS
t − ŷH

t =
yŷt − (λyH + (1 − λ)yS)ŷH

t
(1 − λ)yS =

1
1 − λ

y
yS

(
ŷt − ŷH

t

)
such that we obtain after substituting ĉH

t = ŷH
t = χŷt + (1 − χ)ẑt + χτ τ̂D

t from Lemma 1

ŷS
t − ŷH

t =
1

1 − λ

y
yS

(
(1 − χ)(ŷt − ẑt)− χτ τ̂D

t

)
,

which corresponds to the expression stated in the main text. Conditional on tax shocks, fluctua-

tions in income are hence solely driven by fluctuations in labor income.

B.3 Four Equations Representation

B.3.1 Proof Proposition 2

Proof. To derive the aggregate IS equation, we proceed in two steps: First, we compute cyclical

saver consumption as a function of aggregate output ŷt, endogenous productivity ĝA
t+1 and exoge-

nous technology ẑt. Second, we substitute cyclical hand-to-mouth and saver consumption into the

Euler equation. To begin with, we know from Appendix A.4 that

ĉS
t =

cĉt − λcH ĉH
t

(1 − λ)cS =

(
1 +

λ

1 − λ

1
Γ

)
ĉt −

λ

1 − λ

1
Γ

ĉH
t .

From the aggregate resource constraint, we have ŷt = sc ĉt + (1 − sc)
gA

gA−1 ĝA
t+1. Substituting in for
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ĉt and ĉH
t from Lemma 1, we thus obtain

ĉS
t =

(
1 +

λ

1 − λ

1
Γ

)(
ŷt

sc
− 1 − sc

sc

gA

gA − 1
ĝA

t+1

)
− λ

1 − λ

1
Γ

(
χŷt + (1 − χ)ẑt + χτ τ̂D

t

)
=

(1 − λ)Γ + λ − λscχ

(1 − λ)Γsc
ŷt −

(1 − λ)Γ + λ

(1 − λ)Γ
1 − sc

sc

gA

gA − 1
ĝA

t+1 −
λ(1 − χ)

(1 − λ)Γ
ẑt −

λχτ

(1 − λ)Γ
τ̂D

t

= Eyŷt − Eg ĝA
t+1 − Ez ẑt − Eτ τ̂D

t ,

where Ey, Eg, Ez, Eτ denote partial equilibrium elasticities of saver consumption with respect to

aggregate income, respectively endogenous productivity and exogenous technology, i.e.

Ey ≡ (1 − λ)Γ + λ − λscχ

(1 − λ)Γsc
, Eg ≡ (1 − λ)Γ + λ

(1 − λ)Γ
1 − sc

sc

gA

gA − 1
, Ez ≡

λ(1 − χ)

(1 − λ)Γ
, Eτ ≡ λχτ

(1 − λ)Γ
.

From Appendix A.4 the saver Euler equation is given by

ĉS
t = s̃Et

[
ĉS

t+1

]
+ (1 − s̃)Et

[
ĉH

t+1

]
− (ît − Et [π̂t+1]) + ĝA

t+1 .

Substituting in for the consumption of saver households results in

Eyŷt − Eg ĝA
t+1 − Ez ẑt − Eτ τ̂D

t = s̃Et

[
Eyŷt+1 − Eg ĝA

t+2 − Ez ẑt+1 − Eτ τ̂D
t+1

]
+ (1 − s̃)Et

[
χŷt+1 + (1 − χ)ẑt+1 + χτ τ̂D

t+1

]
− (ît − Et [π̂t+1]) + ĝA

t+1 ,

which can be rearranged to

ŷt =

(
s̃ + (1 − s̃)

χ

Ey

)
Et [ŷt+1]−

1
Ey

(ît − Et [π̂t+1]) +
1 + Eg

Ey
ĝA

t+1 − s̃
Eg

Ey
Et

[
ĝA

t+2

]
+

+
Ez

Ey
ẑt +

1
Ey

((1 − s̃)(1 − χ)− s̃Ez)Et [ẑt+1] +
Eτ

Ey
τ̂D

t − Eτ

Ey

(
s̃ − (1 − s̃)

χτ

Eτ

)
Et

[
τ̂D

t+1

]
.

The former equation can be restated as

ŷt = ζ f Et [ŷt+1]− ζr(ît − Et [π̂t+1]) + ζg ĝA
t+1 − ζg′Et

[
ĝA

t+2
]
+ ζz ẑt + ζz′Et [ẑt+1] + ζτ τ̂D

t − ζτ′Et
[
τ̂D

t+1

]
,

where the compounding parameter is defined as follows

ζ f ≡ s̃ + (1 − s̃)
χ

Ey
= 1 + (1 − s̃)

(
χ

Ey
− 1
)
= 1 + (1 − s̃)

(
(1 − λ)Γscχ − ((1 − λ)Γ + λ − λscχ)

(1 − λ)Γ + λ − λscχ

)
= 1 + (1 − s̃)

(
(1 − λ)Γ + λ

(1 − λ)Γ + λ − λscχ

)
(scχ − 1) = 1 + (1 − s̃)

scχ − 1

1 − λχ
yH

y

,

74



where the last equality makes use of the identity sc = ((1 − λ)Γ + λ)
yH

y . Additionally, we have

ζr ≡
1
Ey

=
(1 − λ)Γsc

(1 − λ)Γ + λ − λscχ
,

ζg ≡
1 + Eg

Ey
=

(1−λ)Γsc(gA−1)
(1−λ)Γsc(gA−1) +

(1−λ)Γ+λ
(1−λ)Γ

1−sc
sc

gA

gA−1
(1−λ)Γ+λ−λscχ

(1−λ)Γsc

=
1

gA − 1
(1 − λ)Γsc(gA − 1) + ((1 − λ)Γ + λ) (1 − sc)gA

(1 − λ)Γ + λ − λscχ
=

(1−λ)Γsc
(1−λ)Γ+λ

+ (1 − sc)
gA

gA−1

1 − λχ
yH

y

=
(1 − λ) cS

y + gA

ψy

1 − λχ
yH

y

,

where the last equality follows from 1 − sc =
gA−1

ψy . Moreover,

ζg′ ≡ s̃
Eg

Ey
= s̃

(1−λ)Γ+λ
(1−λ)Γ

1−sc
sc

gA

gA−1
(1−λ)Γ+λ−λscχ

(1−λ)Γsc

= s̃
gA

gA − 1
((1 − λ)Γ + λ) (1 − sc)

(1 − λ)Γ + λ − λscχ
= s̃

gA

ψy
1

1 − λχ
yH

y

,

ζz ≡
Ez

Ey
=

λ(1−χ)
(1−λ)Γ

(1−λ)Γ+λ−λscχ
(1−λ)Γsc

=
λsc(1 − χ)

(1 − λ)Γ + λ − λscχ
,

ζz′ =
(1 − s̃)(1 − χ)− s̃Ez

Ey
=

(1 − s̃)(1 − λ)Γsc(1 − χ)− s̃λsc(1 − χ)

(1 − λ)Γ + λ − λscχ

=
(1 − s̃)Γ(1 − λ)− s̃λ

(1 − λ)Γ + λ − λscχ
sc(1 − χ) ,

ζτ =
Eτ

Ey
=

λscχτ

(1 − λ)Γ + λ − λscχ
,

ζτ′ =
Eτ

Ey

(
s̃ − (1 − s̃)

χτ

Eτ

)
=

λscχτ

(1 − λ)Γ + λ − λscχ

(
s̃ − (1 − s̃)

χτ

Eτ

)
.

which concludes the proof of Proposition 2.

B.3.2 Proof Corollary 1

Proof. We show each of the three statements (a)− (c) separately.

Statement (a): Recall from Proposition 2 that the elasticity of aggregate demand with respect to

real interest changes is given by

ζr =
1
Ey

=
(1 − λ)Γsc

(1 − λ)Γ + λ − λscχ
.
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The numerator is evidently positive such that the overall sign is determined by the sign of the

denominator. Thus, ζr is positive if and only if (1 − λ)Γ + λ − λscχ > 0, which is equivalent to

χ < χ ≡ (1 − λ)Γ + λ

λsc
,

which is equivalent to

1 + (µ − 1)
λ

λ + ατD <
(1 − λ)Γ + λ

λsc

µ < 1 +
(1 − λ)Γ + λ(1 − sc)

λsc

λ + ατD

λ
,

which corresponds to the threshold stated in the main text. Finally, notice that µ > 1 as Γ > 0, sc <

1, λ > 0 and τD > τD.

Statement (b): Recall from Proposition 2 that the compounding coefficient of the aggregate IS

equation is given by

ζ f = s̃ + (1 − s̃)
χ

Ey
= 1 + (1 − s̃)

(
(1 − λ)Γ + λ

(1 − λ)Γ + λ − λscχ

)
(scχ − 1) .

Given the upper bound µ from statement (a) it is – under s̃ ∈ [0, 1) , Γ > 0–straightforward to see

that ζ f > 1 if and only if χsc > 1, which can be rewritten as

1 + (µ − 1)
λ

λ + ατD >
1
sc

⇔ µ >≡ µ = 1 +
1 − sc

sc

λ + ατD

λ

which corresponds to the lower bound stated in the main text. As a result, the IS equation under

HANK-GS features compounding and admits a negative elasticity of aggregate demand with re-

spect tot real interest rates if 1 < µ < µ < µ. Notice that the former interval is non-empty, i.e.

µ < µ, as long as 1−λ
λsc

Γ > 0, i.e. there is a strictly positive mass of saver households. Notice that

we recover the lower and upper bounds on χ by Bilbiie (2020, 2021) under sc = 1, Γ = 1.

Statement (c): The compounding coefficient can be written as

ζ f = s̃ + (1 − s̃)
χ

Ey
=

s + (1 − s)Γ χ
Ey

s + (1 − s)Γ
.

With a slide abuse of notation, let us define Γ′ ≡ ∂Γ
∂τD , χ′ ≡ ∂χ

∂τD , and E ′
y ≡ ∂Ey

∂τD . As a result, we
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obtain the following comparative static

∂ζ f

∂τD =

(1 − s)
[

Γ′ χ
Ey

+ Γ
χ′Ey−E ′

yχ

(Ey)2

]
(s + (1 − s)Γ)− (1 − s)Γ′

(
s + (1 − s)Γ χ

Ey

)
(s + (1 − s)Γ)2 .

The sign of the previous derivative is determined by

sgn
(

∂ζ f

∂τD

)
= (1 − s) [s + (1 − s)Γ] Γ′ χ

Ey
+ (1 − s) [s + (1 − s)Γ] Γ

χ

Ey

(
χ′

χ
−

E ′
y

Ey

)
− s(1 − s)Γ′ − (1 − s)2Γ′Γ

χ

Ey

= [s + (1 − s)Γ] Γ′ χ

Ey
+ [s + (1 − s)Γ] Γ

χ

Ey

(
χ′

χ
−

E ′
y

Ey

)
− sΓ′ − (1 − s)Γ′Γ

χ

Ey

= sΓ′
(

χ

Ey
− 1
)
+ [s + (1 − s)Γ] Γ

χ

Ey

(
χ′

χ
−

E ′
y

Ey

)

= s
Γ′

Γ

(
χ

Ey
− 1
)
+ [s + (1 − s)Γ]

χ

Ey

(
χ′

χ
−

E ′
y

Ey

)

= [s + (1 − s)Γ]
χ

Ey

[
s̃

Γ′

Γ

(
1 −

Ey

χ

)
+

(
χ′

χ
−

E ′
y

Ey

)]
,

where the second equality divides through 1− s, the third equality collects terms, the fourth equal-

ity divides through Γ, while the terminal equality simplifies terms. As a result, we obtain

sgn
(

∂ζ f

∂τD

)
= [s + (1 − s)Γ]

χ

Ey

[
s̃

Γ′

Γ

(
1 −

Ey

χ

)
+

(
χ′

χ
−

E ′
y

Ey

)]
. (20)

Additionally, if sc = 1 we have from above Ey = (1−λ)Γ+λ−λχ
(1−λ)Γ such that

∂Ey

∂τD =
[(1 − λ)Γ′ − λχ′] (1 − λ)Γ − (1 − λ)Γ′ [(1 − λ)Γ + λ − λχ]

((1 − λ)Γ)2

=
−λ(1 − λ) [Γχ′ + Γ′(1 − χ)]

((1 − λ)Γ)2

= − λ

1 − λ

1
Γ

(
χ′ +

Γ′

Γ
(1 − χ)

)
.

Hence we get

E ′
y

Ey
= −

λ
(

χ′ + Γ′

Γ (1 − χ)
)

(1 − λ)Γ + λ − λχ
.

To further determine the sign of equation (20) we use Result 3.

Result 3 (SIGN E ′
y). If µ > 1 applies, i.e. hand-to-mouth households are over-proportionally exposed to

aggregate labor fluctuations, then ∂Ey

∂τD < 0 ∀τD ∈
(

τD, τD
)

.

77



Proof. Notice that steady state consumption inequality is in the absence of endogenous growth

under ψ = 0 and gA = 1 given by

Γ =
cS

cH =
1 + α 1−τD

1−λ

1 + α τD

λ

, χ = 1 + (µ − 1)
λ

λ + ατD .

It can be seen that hand-to-mouth consumption cH is strictly positive if τD > τD ≡ −λ
α , whereas

saver consumption cS is strictly positive if τD < τD ≡ 1 + 1−λ
α . Obviously it holds that Γ > 0 for

all τD ∈
(

τD, τD
)

. As a result, the sign of ∂Ey

∂τD is determined by the sign of χ′ + Γ′

Γ (1 − χ). Using

the following derivatives

∂χ

∂τD = −α(µ − 1)
λ

(λ + ατD)2 ,

∂Γ
∂τD =

− α
1−λ

(
1 + α τD

λ

)
− α

λ

(
1 + α 1−τD

1−λ

)
(

1 + α τD

λ

)2 =

−αλ−α(1−λ)−α2

λ(1−λ)(
1 + α τD

λ

)2 = − α(1 + α)

λ(1 − λ)

1(
1 + α τD

λ

)2 ,

∂Γ
∂τD

Γ
= − α(1 + α)

λ(1 − λ)

1(
1 + α 1−τD

1−λ

) (
1 + α τD

λ

) ,

we finally obtain

∂χ

∂τD +
∂Γ

∂τD

Γ
(1 − χ) = −α(µ − 1)

λ

(λ + ατD)2 +
α(1 + α)

λ(1 − λ)

1(
1 + α 1−τD

1−λ

) (
1 + α τD

λ

) µ − 1

1 + α τD

λ

.

(a) CASE 1: Positive excess labor incidence elasticity.

If µ > 1 applies, the sign of E ′
y is determined by

sgn
(

∂Ey

∂τD

)
= −sgn

−1 +
1 + α

(1 − λ)
(

1 + α 1−τD

1−λ

)
 = −sgn

(
λ + ατD

1 − λ + α(1 − τD)

)
< 0 ,

where the strictly negative sign holds true on the interval τD ∈
(

τD, τD
)

.

(b) CASE 2: Zero excess labor incidence elasticity.

If µ = 1 applies, it is straightforward to see that sgn
(

∂Ey

∂τD

)
= 0 such that Ey = ζ f = 1 for all

τD ∈
(

τD, τD
)

.

(c) CASE 3: Negative excess labor incidence elasticity.

If µ < 1 applies, then the reverse sign relative to the case µ > 1 holds true, i.e. sgn
(

∂Ey

∂τD

)
> 0

for all τD ∈
(

τD, τD
)

.
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Result 4 (COMPOUNDING REDISTRIBUTION DISCONTINUITY). If 1 < µ < 1 + 1+α
λ applies, then

there exists τD < τD
disc < τD such that Ey > 0 for τD < τD

disc and Ey < 0 for τD > τD
disc.

Proof. The auxiliary parameter Ey is given by

Ey =
(1 − λ)Γ + λ − λχ

(1 − λ)Γ
.

For λ ∈ (0, 1) and τD ∈
(

τD, τD
)

the denominator is strictly positive. Hence the sign of Ey is

determined by the numerator. The latter is given by

(1 − λ)Γ + λ(1 − χ) = (1 − λ)
1 + α 1−τD

1−λ

1 + α τD

λ

− λ
µ − 1

1 + α τD

λ

=
1

1 + α τD

λ︸ ︷︷ ︸
>0

(
1 − λ + α(1 − τD)− λ(µ − 1)

)
.

As a result Ey(τD
disc) = 0, where

τD
disc = 1 +

1 − λµ

α
.

The proof concludes by recognizing that τD < τD
disc < τD if and only if 1 < µ < 1+ (1 + α) /λ. As

a result, τD > τD
disc implies Ey < 0 and vice versa τD < τD

disc implies Ey > 0.

Result 5 (COMPARATIVE STATICS COMPOUNDING). In the case of 1 < µ < 1 + 1+α
λ , it follows for

τD > τD
disc that ∂ζ f

∂τD > 0, i.e. the compounding coefficient increases in redistribution, with asymptotic limit

lim
τD→τD

ζ f = 1.

Proof. As before, µ > 1 ensures that τD
disc < τD, while µ < 1 + 1+α

λ guarantees that τD
disc > τD. The

first statement of Result 5 follows from equation (20): τD
disc < τD < τD implies that Ey < 0 such

that
E ′

y
Ey

> 0. As Γ > 0, Γ′ < 0, χ > 0, χ′ < 0 holds as well on
(

τD, τD
)

, it is straightforward to see

that sgn
(

∂ζ f

∂τD

)
> 0. To prove the second statement, notice the following limits:

lim
τD→τD

Γ(τD) = 0 , lim
τD→τD

χ(τD) = 1 + (µ − 1)
λ

1 + α
> 0 , and lim

τD→τD
Ey(τ

D) = −∞ .

As a result, using the previous limits, we obtain

lim
τD→τD

ζ f =
s − (1 − s)× 0 × χ(τD)

∞
s + (1 − s)× 0

= 1 ,
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which completes the proof.

Result 6 (COMPOUNDING REDISTRIBUTION SHAPE). If 1 < µ < 1 + 1+α
λ applies, there exist τD <

τD
eq < τD

zero < τD
disc < τD such that the compounding coefficient decreases in τD on

(
τD, τD

zero
)
, while it

increases in τD on
(
τD

zero, τD
disc

)
. It also holds that ζ f (τ

D
zero) > 1.

Proof. On τD < τD < τD
disc, substituting into sgn

(
∂ζ f

∂τD

)
the expression for

E ′
y

Ey
yields

sgn
(

∂ζ f

∂τD

)
= χ

Ey

[
s̃ Γ′

Γ

(
1 − Ey

χ

)
+

(
χ′

χ − E ′
y

Ey

)]
= s

Γ′

Γ

(
χ

Ey
− 1
)

︸ ︷︷ ︸
1⃝

+ (s + (1 − s)Γ)︸ ︷︷ ︸
2⃝

χ

Ey

(
χ′

χ
−

E ′
y

Ey

)
︸ ︷︷ ︸

3⃝

.

There are several sub-components that needs to be explored. To begin with,

Ey =
(1 − λ)Γ + λ − λχ

(1 − λ)Γ
=

(1 − λ)
1+α 1−τD

1−λ

1+α τD
λ

− (µ − 1) λ

1+α τD
λ

(1 − λ)
1+α 1−τD

1−λ

1+α τD
λ

=
1 − λ + α(1 − τD)− λ(µ − 1)

1 − λ + α(1 − τD)
> 0 ,

which is strictly positive because of τD < min{τD
disc, τD}. Additionally, we have

E ′
y = − λ

(1 − λ)Γ

(
χ′ + (1 − χ)

Γ′

Γ

)

= − λ

(1 − λ)

1 + α τD

λ

1 + α 1−τD

1−λ

− α(µ − 1)

λ(1 + α τD

λ )2
+

α(1 + α)

λ(1 − λ)

1(
1 + α 1−τD

1−λ

) (
1 + α τD

λ

) µ − 1

1 + α τD

λ


= − α(µ − 1)

1 − λ + α(1 − τD)

(
− 1

1 + α τD

λ

+
1 + α

1 − λ + α(1 − τD)

1

1 + α τD

λ

)

= − α(µ − 1)
1 − λ + α(1 − τD)

λ

λ + ατD
λ + ατD

1 − λ + α(1 − τD)

= − α(µ − 1)λ

(1 − λ + α(1 − τD))
2 .

Thus, it follows

E ′
y

Ey
= − α(µ − 1)λ

[1 − λ + α(1 − τD)] [1 − λ + α(1 − τD)− λ(µ − 1))]
.

Moreover,
χ′

χ
= −

α(µ − 1) λ
(λ+ατD)2

λ+ατD+(µ−1)λ
λ+ατD

= − α(µ − 1)(
1 + α τD

λ

)
(ατD + λµ)

.
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We also have
χ

Ey
=

λ+ατD+(µ−1)λ
λ+ατD

1−λ+α(1−τD)−λ(µ−1)
1−λ+α(1−τD)

=
ατD + λµ

λ + ατD
1 − λ + α(1 − τD)

1 + α − ατD − λµ

such that

χ

Ey
− 1 =

[
ατD + λµ

] [
1 − λ + α(1 − τD)

]
−
[
λ + ατD] [1 + α − ατD − λµ

]
[λ + ατD] [1 + α − ατD − λµ]

=
λ(1 + α)(µ − 1)

[λ + ατD] [1 + α − ατD − λµ]
.

As a result, the first two terms determining sgn
(

∂ζ f

∂τD

)
are given by

1⃝ = s
Γ′

Γ

(
χ

Ey
− 1
)
= − sα(1 + α)

(1 − λ + α(1 − τD)) (λ + ατD)

λ(1 + α)(µ − 1)
[λ + ατD] [1 + α − ατD − λµ]

,

2⃝ = s + (1 − s)
1 + α 1−τD

1−λ

1 + α τD

λ

,

and the third one by

3⃝ =
χ

Ey

(
χ′

χ
−

E ′
y

Ey

)

=

[
ατD + λµ

] [
1 − λ + α(1 − τD)

]
α(µ − 1)λ

[λ + ατD] [1 + α − ατD − λµ]
×(

− 1
(λ + ατD) (ατD + λµ)

+
1

[1 − λ + α(1 − τD)] [1 − λ + α(1 − τD)− λ(µ − 1))]

)
.

As a result, we obtain on τD < τD
disc

sgn
(

∂ζ f

∂τD

)
= 1⃝+ 2⃝× 3⃝

=
−s(1 + α)2

(1 − λ + α(1 − τD)) (λ + ατD)
+ 2⃝×

(
−1 − λ + α(1 − τD)

λ + ατD +
ατD + λµ

1 + α(1 − τD)− λµ

)
,

where the last component can be simplified to

−1 − λ + α(1 − τD)

λ + ατD +
ατD + λµ

1 + α − ατD − λµ
= −

(1 + α)
[
1 + α − λ(1 + µ)− 2ατD]

[λ + ατD] [1 + α − ατD − λµ]
.

Multiplying through by λ + ατD > 0, we finally obtain

sgn
(

∂ζ f

∂τD

)
= − s(1 + α)2

1 − λ + α(1 − τD)
−
(

s + (1 − s)
1 + α 1−τD

1−λ

1 + α τD

λ

)
(1 + α)

[
1 + α − λ(1 + µ)− 2ατD]
1 + α − ατD − λµ

.
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There are four things worth mentioning: (i) the first component is always negative for τD < τD;

(ii) the second pre-multiplying component is strictly positive for all τD ∈
(

τD, τD
)

; (iii) the

numerator of the third term is positive if τD < 1+α−λ−λµ
2α which is larger than τD and smaller than

τD
disc if µ < 1 + 1+α

λ which holds by assumption; (iv) the denominator of the third term is positive

if τD < τD
disc and negative if τD > τD

disc. As a result, τD < 1+α−λ−λµ
2α < τD

disc is a sufficient condition

for sgn
(

∂ζ f

∂τD

)
< 0. Additionally, on the interval ( 1+α−λ−λµ

2α , τD
disc) there exists a threshold τD

zero

above which sgn
(

∂ζ f

∂τD

)
> 0. The proof of statement (c) follows by combining Results 3 - 6.

In Figure 10, we illustrate the previously discussed properties. To do so, we use the following

parameters, i.e., α = 0.50, β = 0.99, µ = 1.25, λ = 0.40, s = 0.95. For these values, ζ f decreases on

τD ∈ [0, 1] such that the U-shape is only for excessive steady-state tax redistribution apparent.

Figure 10. Comparative statics of IS compounding regarding redistribution under tractable HANK model.
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B.3.3 Proof Proposition 3

Proof. From Appendix A.4 the endogenous productivity equation is given by

ĝA
t+1 = ĉS

t − Et

[
ĉS

t+1

]
+M Et

[
ẑt+1 + L̂t+1

]
−MτEt

[
τ̂D

t+1

]
.
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Substituting in for cyclical saver consumption, i.e. ĉS
t = Eyŷt − Eg ĝA

t+1 − Ez ẑt − Eτ τ̂D
t , we obtain

ĝA
t+1 = Eyŷt − Eg ĝA

t+1 − Ez ẑt − Eτ τ̂D
t − Et

[
Eyŷt+1 − Eg ĝA

t+2 − Ez ẑt+1 − Eτ τ̂D
t+1

]
+M Et [ŷt+1]−MτEt

[
τ̂D

t+1

]
,

where we have used Et [ŷt+1] = Et
[
ẑt+1 + L̂t+1

]
. Collecting terms gives us finally

ĝA
t+1 = ξyŷt + ξy′Et [ŷt+1] + ξg′Et [ĝt+2]− ξzzt + ξz′ [zt+1]− ξτ τ̂D

t + ξτ′Et

[
τ̂D

t+1

]
,

where we have the following auxiliary variables

ξy ≡ Ey
1+Eg

, ξy′ ≡
M−Ey
1+Eg

, ξg′ ≡
Eg

1+Eg
, ξz = ξz′ ≡ Ez

1+Eg
, ξτ ≡ Eτ

1+Eg
, ξτ′ ≡ Eτ−Mτ

1+Eg

where Ey, Eg, Ez, Eτ, M , and Mτ have been defined above.

B.3.4 Proof Proposition 4

Proof. From Appendix A.4, we know that the log-linear static wage Phillips curve is given by

π̂w
t = κ

(
φL̂t + ĉt − ẑt

)
.

Substituting in for L̂t and ĉt results in

π̂w
t = κ

φ (ŷt − ẑt) +
ŷt − (1 − sc)

gA

gA−1 ĝA
t+1

sc
− ẑt

 ,

= κ
1 + φsc

sc
ŷt − κ

1 − sc

sc

gA

gA − 1
ĝA

t+1 − κ(1 + φ)ẑt .

Making use of the equation linking price and wage inflation, one finally obtains

π̂t = π̂w
t + ẑt−1 − ẑt − ĝA

t

= κ
1 + φsc

sc
ŷt − κ

1 − sc

sc

gA

gA − 1
ĝA

t+1 − κ(1 + φ)ẑt + ẑt−1 − ẑt − ĝA
t

= κyŷt − κg ĝA
t+1 − ĝA

t − κz ẑt + ẑt−1 ,

where the auxiliary parameters are defined as follows

κy ≡ κ
1 + φsc

sc
, κg ≡ κ

1 − sc

sc

gA

gA − 1
, κz ≡ 1 + κ(1 + φ) .
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Notice that the former definition also allows to write

π̂w
t = κyŷt − κg ĝA

t+1 + (1 − κz)ẑt .

B.4 Dissecting the Role of Cyclical Income Inequality

B.4.1 Proof Proposition 5

Proof. In a rational expectations equilibrium to an exogenous monetary policy, technology or tax

shock of persistence ρ ∈ (0, 1) the endogenous technology impact multiplier is, using the method

of undetermined coefficients and guessing that ŷt = Myϵt and ĝA
t+1 = Mgϵt, given by

Mg =
ξy + ρξy′

1 − ρξg′
Mg −

1
1 − ρξg′

(ξz(1 − ρ) + ξτ − ρξτ′) =
Ey(1 − ρ) + ρM

1 + Eg(1 − ρ)
My −

Ξz,τ,m

1 + Eg(1 − ρ)
,

where Ξz,τ,m = 0 in case of a monetary policy shock, Ξz,τ,m = (1 − ρ)Ez in case of a technology

shock, and Ξz,τ,m = (1− ρ)Eτ +Mτ in case of a tax shock. Taking the derivative w.r.t. to the degree

of countercyclical inequality χ results in

∂Mg

∂χ
=

1
1 + Eg(1 − ρ)

(
(1 − ρ)My

∂Ey

∂χ
+
(
Ey(1 − ρ) + ρM

) ∂My

∂χ
− ∂Ξz,τ,m

∂χ

)
as Eg and M are independent of χ. We consider an exogenous shock which is recessionary, i.e.

My < 0. The scars irrelevance frontier of countercyclical inequality at level g is thus given by

(1 − ρ)My
∂Ey

∂χ
+
(
Ey(1 − ρ) + ρM

) ∂My

∂χ
− ∂Ξz,τ,m

∂χ
≤
(
1 + Eg(1 − ρ)

)
g ,

which can be rearranged to

My
∂Ey

∂χ

χ

Ey
≤ χ

(1 − ρ)Ey

((
1 + Eg(1 − ρ)

)
g +

∂Ξz,τ,m

∂χ

)
−
(

1 +
ρ

1 − ρ

M

Ey

)
∂My

∂χ
χ .

Division by My finally results in

∂Ey

∂χ

χ

Ey
≥ χ

(1 − ρ)EyMy

((
1 + Eg(1 − ρ)

)
g +

∂Ξz,τ,m

∂χ

)
−
(

1 +
ρ

1 − ρ

M

Ey

)
∂My

∂χ

χ

My
,

which completes the derivation.
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B.5 A Detailed Look at the Propagation of Monetary Policy Shocks

B.5.1 Proof Proposition 6

Proof. The relevant system of equations is given by

ŷt = ζ f Et [ŷt+1]− ζr
(
ît − Et [π̂t+1]

)
+ ζg ĝA

t+1 − ζg′Et

[
ĝA

t+2

]
,

ĝA
t+1 = ξyŷt + ξy′Et [ŷt+1] + ξg′Et

[
ĝA

t+2

]
,

π̂w
t = κyŷt − κg ĝA

t+1 ,

π̂t = π̂w
t − ĝA

t ,

ît = ϕππ̂w
t + ϵmt .

As stated in the main body of the text, we assume that ϵmt follows and AR(1) process with persis-

tence ρm. Using the method of undetermined coefficients, we guess a solution of the form

ŷt = Myϵmt , ĝA
t+1 = Mgϵmt , π̂t = Mπϵmt , π̂w

t = Mπw ϵmt.

Endogenous Growth Multiplier. To begin with, we obtain from the second equation

Mg =
ξy + ρmξy′

1 − ρmξg′
My =

Ey
1+Eg

+ ρm
M−Ey
1+Eg

1 − ρm
Eg

1+Eg

My =
Ey(1 − ρm) + ρmM

1 + Eg(1 − ρm)
My ≡ ΩMy ,

where the auxiliary parameter is defined as

Ω =
Ey(1 − ρm) + ρmM

1 + Eg(1 − ρm)
.

Notice that using the definition of F ≡ Ey/(1 + Eg), that describes a pure contemporaneous cost

of funds effect, one can rewrite Ω as weighted sum, i.e.

Ω = ωF + (1 − ω)M ,

where ω is the solution to

ω

( Ey

1 + Eg
−M

)
+M =

Ey(1 − ρm) + ρmM

1 + Eg(1 − ρm)
,

which can be rearranged to

ω =
1 + Eg

Ey −
(
1 + Eg

)
M

Ey(1 − ρm)− (1 − ρm)
(
1 + Eg

)
M

1 + Eg(1 − ρm)
= (1 − ρm)

1 + Eg

1 + Eg(1 − ρm)
.
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There are two things worth noting: First, Mg has the same sign as My, i.e. Ω > 0. Second, we

have Ω|ρm=0 = F = Ey/(1 + Eg). Moreover, lim
ρm→1

Ω|ρm = M which is a pure market size effect.

Output Multiplier. From the aggregate IS equation, we have

My = ρmζ fMy − ζr

(
ϕπ(κyMy − κgMg)− ρm(κyMy − κgMg) +Mg

)
+ ζgMg − ρmζg′Mg − ζr .

Rearranging results in(
1 + ϕπζrκy − ρm(ζ f + ζrκy)

)
My =

(
ϕπζrκg + ζg − ζr − ρm(ζrκg + ζg′)

)
Mg − ζr

such that the output multiplier to a positive monetary innovation becomes

My = − ζr

1 + ϕπζrκy − ρm(ζ f + ζrκy)−
(
ϕπζrκg + ζg − ζr − ρm(ζrκg + ζg′)

)
Ω

.

The previous expression can be rearranged to

My = − 1
ζ−1

r (1 − ρmζ f ) + κy(ϕπ − ρm)−
(
κg(ϕπ − ρm)− 1 + ζ−1

r (ζg − ρmζg′)
)
Ω

.

= − 1
ζ−1

r (1 − ρmζ f ) + (κy − Ωκg)(ϕπ − ρm)− (1 − ρm s̃) EgΩ
,

where the last line follows as

ζ−1
r (ζg − ζr − ρmζg′) = ζ−1

r

(Eg

Ey
− ρm s̃

Eg

Ey

)
= (1 − ρm s̃) Eg .

Inflation Multiplier. From the contemporaneous wage inflation Phillips curve, we obtain

Mπw = κyMy − κgMg = (κy − Ωκg)My ,

which equals at impact also Mπ as ĝA
t = 0. This concludes the proof of the Proposition.

B.5.2 Proof Corollary 2

Proof. Recall that the output response of a monetary policy shock is given by

1
|My|

= Ey(1 − ρmζ f ) + (κy − Ωκg)(ϕπ − ρm)− (1 − ρm s̃) EgΩ
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Recall the definition of Ey and κy and let us define Ẽy, respectively κ̃y:

Ey =
(1 − λ)Γ + λ − λscχ

(1 − λ)Γsc
, Ẽy =

(1 − λ)Γ + λ − λχ

(1 − λ)Γ
,

κy = κ
1 + φsc

sc
, κ̃y = κ(1 + φ) .

Having this at hands, we obtain

1
|My|

= (1 − ρm)Ey − ρm(1 − s̃)
(
χ − Ey

)
+ κy(ϕπ − ρm)− Ωκg(ϕπ − ρm)− (1 − ρm s̃) EgΩ

= (1 − ρm) + κy(ϕπ − ρm) + (1 − ρm)
(
Ey − 1

)
− ρm(1 − s̃)

(
χ − Ey

)
− Ωκg(ϕπ − ρm)− (1 − ρm s̃) EgΩ

= (1 − ρm) + κ̃y(ϕπ − ρm) + (1 − ρm)
(
Ẽy − 1

)
+ ρm(1 − s̃)

(
Ẽy − χ

)
+

(
κ(ϕπ − ρm) + (1 − ρm s̃)

(1 − λ)Γ + λ

(1 − λ)Γ

)
1 − sc

sc
− Ωκg(ϕπ − ρm)− (1 − ρm s̃) EgΩ ,

where the first line follows from using ζ f = 1 + (1 − s̃)
(

χ
Ey

− 1
)

, the second line by adding an

intelligent zero, and the third one by replacing Ey, κy with their counterfactual ones from a model

without endogenous growth, i.e. Ẽy, κ̃y. Notice that Ẽy − 1 < 0 if χ > 1, and also Ẽy − χ < 0

if χ > 1. This former expression can finally be rearranged to the one stated in the main text by

recognizing that

−Ωκg(ϕπ − ρm) = −ΩRAκg(ϕπ − ρm) + (ΩRA − Ω)κg(ϕπ − ρm)

and additionally that

− (1 − ρm s̃) EgΩ = −(1 − ρm)s̃EgΩ − (1 − s̃)EgΩ .

This concludes the derivation of the decomposition.

B.5.3 Proof Proposition 7

Proof. The proof proceeds in two steps. In the first one, we derive ∂My
∂χ and show that its sign is

characterized by a second order polynomial in ρm. In the second step, we conduct a case distinc-

tion to determine the sign of this polynomial.

Step 1: Derivation of Second Order Polynomial

To begin with, let us denote My = −M+
y , where M+

y denotes the positive part of the output
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multiplier. Notice that the denominator of M+
y can be rewritten as

Ey(1 − ρmζ f ) + (κy − Ωκg)(ϕπ − ρm)− (1 − ρm s̃) EgΩ ,

such that we obtain

∂My

∂χ
=
(
M+

y

)2
(
(1 − ρmζ f )

∂Ey

∂χ
− ρmEy

∂ζ f

∂χ
−
[
κg(ϕπ − ρm) + (1 − ρm s̃) Eg

] ∂Ω
∂χ

)
.

Because of
∂Ω
∂χ

=
1 − ρm

1 + Eg(1 − ρm)

∂Ey

∂χ
< 0 ,

∂ζ f

∂χ
= −(1 − s̃)

χ(
Ey
)2

∂Ey

∂χ
+ (1 − s̃)

1
Ey

> 0 ,

the previous expression can be rewritten as

∂My

∂χ
=
(
M+

y

)2
([

1 − ρmζ f + ρm (1 − s̃)
χ

Ey

]
∂Ey

∂χ
− ρm (1 − s̃)

)
−
(
M+

y

)2 [
κg(ϕπ − ρm) + (1 − ρm s̃)Eg

] 1 − ρm

1 + Eg(1 − ρm)

∂Ey

∂χ
.

Making use of

1 − ρmζ f + ρm (1 − s̃)
χ

Ey
= 1 − ρm

(
s̃ + (1 − s̃)

χ

Ey

)
+ ρm (1 − s̃)

χ

Ey
= 1 − ρm s̃ ,

we obtain

∂My

∂χ
=
(
M+

y

)2
(

1
1 + Eg(1 − ρm)

[
1 − ρm s̃ − κg(ϕπ − ρm)(1 − ρm)

] ∂Ey

∂χ
− ρm (1 − s̃)

)
.

Notice that ∂My
∂χ is continuously differentiable on ρm ∈ (0, 1). Its upper limit is given by

lim
ρm→1

∂My

∂χ
=
(
M+

y |ρm=1

)2
(1 − s̃)

(
∂Ey

∂χ
− 1
)
< 0 ,

where

M+
y |ρm=1 =

1
Ey(1 − ζ f ) + (κy −M κg)(ϕπ − 1)− (1 − s̃) EgM

̸= 0 .

The sign of the penultimate inequality follows as ∂Ey
∂χ < 0. Similarly, the lower limit is given by

lim
ρm→0

∂My

∂χ
=
(
M+

y |ρm=0

)2 1
1 + Eg

[
1 − κgϕπ

] ∂Ey

∂χ
,
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where
M+

y |ρm=0 =
1

Ey
1+Eg

(1 − κgϕπ) + κyϕπ

̸= 0 .

There arise three cases:

1. If ϕπ > κ−1
g , then lim

ρm→0

∂My
∂χ > 0.

2. If ϕπ = κ−1
g , then lim

ρm→0

∂My
∂χ = 0.

3. If ϕπ < κ−1
g , then lim

ρm→0

∂My
∂χ < 0.

To understand how the sign of ∂My
∂χ depends on ρm based on this case distinction, we solve for its

roots by rewriting

1
1 + Eg(1 − ρm)

[
(1 − ρm s̃)− κg(ϕπ − ρm)(1 − ρm)

] ∂Ey

∂χ
− ρm(1 − s̃) = 0

⇔
[
(1 − ρm s̃)− κg(ϕπ − ρm)(1 − ρm)

] ∂Ey

∂χ
− (1 + Eg(1 − ρm))ρm(1 − s̃) = 0

⇔
[

1 − ρm s̃ − κg

(
ϕπ − (1 + ϕπ)ρm + ρ2

m

)]
∂Ey

∂χ
−
(
(1 + Eg)ρm − Egρ2

m

)
(1 − s̃) = 0 .

As a result, one obtains the quadratic polynomial

f (ρm) ≡ aρ2
m + bρm + c = 0 ,

where

a = −κg
∂Ey

∂χ
+ Eg (1 − s̃) ,

b =
[
−s̃ + κg(1 + ϕπ)

] ∂Ey

∂χ
− (1 + Eg) (1 − s̃) ,

c = (1 − κgϕπ)
∂Ey

∂χ
.

Notice that a > 0 due to ∂Ey
∂χ < 0 and Eg > 0 such that f (ρm) is strictly convex, and attains its

minimum at ρmin
m = − b

2a with f (ρmin
m ) = − 1

4
b2

a + c. By standard calculus, the roots of f (ρm) are

characterized by

ρ1,2
m =

−b ±
√

b2 − 4ac
2a

.

STEP 2: SIGN OF SECOND ORDER POLYNOMIAL

To make progress on the previous cases, we use the following auxiliary result.
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Result 7 (ROOTS QUADRATIC POLYNOMIAL). Let us assume that the roots of f (ρm) are real-valued,

i.e. b2 − 4ac > 0. Under our particular values for a, b and c, it follows that max{ρ1
m, ρ2

m} > 1 and

min{ρ1
m, ρ2

m} < 1.

Proof. Because of a > 0 and b2 − 4ac > 0, the largest root ρl
m is given by

ρl
m = max{ρ1

m, ρ2
m} =

−b +
√

b2 − 4ac
2a

.

Consequently, ρl
m > 1 applies if

−b +
√

b2 − 4ac
2a

> 1 ⇔ b2 − 4ac > 4a2 + 4ab + b2 ⇔ a(a + b + c) < 0 .

Notice that the first inequality applies by assumption if 2a + b < 0, while the second one is neces-

sary to check if 2a + b > 0. Substituting in for a, b, c, the latter conditions trivially holds as

a + b + c = −κg
∂Ey

∂χ
+ Eg (1 − s̃) +

[
−s̃ + κg(1 + ϕπ)

] ∂Ey

∂χ

− (1 + Eg) (1 − s̃) + (1 − κgϕπ)
∂Ey

∂χ

= (1 − s̃)
(

∂Ey

∂χ
− 1
)
< 0 .

To show the second statement, notice that the smaller root ρs
m is consequently given by

ρs
m = min{ρ1

m, ρ2
m} =

−b −
√

b2 − 4ac
2a

.

If 2a + b > 0 applies, then ρs
m < 1 holds by assumption. If however 2a + b < 0 applies, then

ρs
m < 1 holds true if

−b −
√

b2 − 4ac
2a

< 1 ⇔
√

b2 − 4ac > −(2a + b) ⇔ a(a + b + c) < 0 ,

which is satisfied by the above reasoning. This concludes the proof.

Coming back to the case distinction from the first part, we obtain:

1. If ϕπ > κ−1
g , then b < 0 and c > 0 such that ρmin

m > 0. Because of lim
ρm→0

∂My
∂χ > 0 and lim

ρm→1

∂My
∂χ <

0, it follows by the intermediary value theorem for continuous functions and the fact that

f (ρm) is a quadratic polynomial that there exists a unique ρSR
m ∈ (0, 1) such that ∂My

∂χ > 0

on ρm ∈ (0, ρSR
m ), while ∂My

∂χ < 0 on ρm ∈ (ρSR
m , 1). Consequently, f (ρm) has two real-valued

roots, as a second order polynomial cannot jointly have real and complex roots, and hence
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b2 − 4ac > 0 follows. Finally, using the above auxiliary result, the threshold is

ρSR
m =

−b −
√

b2 − 4ac
2a

.

2. If ϕπ = κ−1
g , then b < 0 and c = 0 such that ρmin

m > 0. As a result, both roots are given by

ρs
m = 0 , ρl

m = −b
a
> 0 .

Because of

−b
a
= −

[
1 − s̃ + κg

] ∂Ey
∂χ − (1 + Eg) (1 − s̃)

−κg
∂Ey
∂χ + Eg (1 − s̃)

> 1 ,

it then follows that ∂My
∂χ < 0 on ρm ∈ (0, 1), where lim

ρm→0

∂My
∂χ = 0 describes the smaller root.

3. If ϕπ < κ−1
g , then c < 0 while the sign of b is ambiguous. Additionally, b2 − 4ac > 0 such that

both roots are real-valued. As b2 − 4ac > b2 applies, it thus follows – independently of the

sign of b – that ρs
m < 0 and ρl

m > 0. Because of lim
ρm→0

∂My
∂χ < 0 and lim

ρm→1

∂My
∂χ < 0, we must have

that ρl
m > 1 such that ∂My

∂χ < 0 on ρm ∈ (0, 1).

Combining cases 2. − 3. gives the first statement in Proposition 7, whereas first case corresponds

to the second statement. This concludes the proof.

B.5.4 Proof Proposition 8

Proof. The proof proceeds analogously to the one for Proposition 7. In the first step, we compute
∂Mg

∂χ and show that it constitutes a quadratic polynomial in ρm. In the second step we show that

there exists a unique threshold ρLR
m ∈ (0, 1) that determines the sign of ∂Mg

∂χ .

To begin with, we have Mg = ΩMy such that

∂Mg

∂χ
= −

(
∂Ω
∂χ

M+
y + Ω

∂M+
y

∂χ

)
.

From the proof of Proposition 7, we have

∂M+
y

∂χ
= −

(
M+

y

)2
(

1
1 + Eg(1 − ρm)

[
1 − ρm s̃ − κg(ϕπ − ρm)(1 − ρm)

] ∂Ey

∂χ
− ρm (1 − s̃)

)
,

∂Ω
∂χ

=
1 − ρm

1 + Eg(1 − ρm)

∂Ey

∂χ
,
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such that we get

∂Mg

∂χ
=−M+

y
1 − ρm

1 + Eg(1 − ρm)

∂Ey

∂χ

+
(
M+

y

)2 1
1 + Eg(1 − ρm)

[
1 − ρm s̃ − κg(ϕπ − ρm)(1 − ρm)

] ∂Ey

∂χ
Ω ,

−
(
M+

y

)2
ρm (1 − s̃)Ω ,

where we additionally have

Ω =
Ey(1 − ρm) + ρmM

1 + Eg(1 − ρm)
.

As a result, the derivative takes the following limits

lim
ρm→1

∂Mg

∂χ
=
(
M+

y |ρm=1

)2
M (1 − s̃)

(
∂Ey

∂χ
− 1
)
< 0 ,

where the sign follows from ∂Ey
∂χ < 0. Additionally, we have

lim
ρm→0

∂Mg

∂χ
= −

M+
y |ρm=0

1 + Eg

∂Ey

∂χ
+

(
M+

y |ρm=0

)2

1 + Eg

(
1 − κgϕπ

) ∂Ey

∂χ

Ey

1 + Eg

= −
M+

y |ρm=0

1 + Eg

∂Ey

∂χ

(
1 −

Ey

1 + Eg

(
1 − κgϕπ

)
M+

y |ρm=0

)

= −
M+

y |ρm=0

1 + Eg

∂Ey

∂χ

1 −
Ey

1+Eg

(
1 − κgϕπ

)
Ey

1+Eg

(
1 − κgϕπ

)
+ κyϕπ


= −

M+
y |ρm=0

1 + Eg

κyϕπ

Ey
1+Eg

(
1 − κgϕπ

)
+ κyϕπ

∂Ey

∂χ

= −κyϕπ

(
M+

y |ρm=0

)2

1 + Eg

∂Ey

∂χ
> 0 ,

where the last inequality follows in turn from ∂Ey
∂χ < 0. Additionally, to determine the sign of ∂Mg

∂χ ,

one can simplify

∂Mg

∂χ
=−

(
M+

y

)2

1 + Eg(1 − ρm)

(
1 − ρm

M+
y

− Ω
[
1 − ρm s̃ − κg(ϕπ − ρm)(1 − ρm)

]) ∂Ey

∂χ

−

(
M+

y

)2

1 + Eg(1 − ρm)

((
1 + Eg(1 − ρm)

)
ρm (1 − s̃)Ω

)
,
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such that the sign of ∂Mg
∂χ is determined by

sgn ∂Mg
∂χ = −

([
1−ρm
M+

y
− Ω

(
1 − ρm s̃ − κg(ϕπ − ρm)(1 − ρm)

)] ∂Ey
∂χ +

(
(1 + Eg(1 − ρm))ρm (1 − s̃)Ω

))
.

Substituting in for M+
y , one obtains

sgn
∂Mg

∂χ
=−

[
(1 − ρm)

(
Ey(1 − ρmζ f ) + (κy − Ωκg)(ϕπ − ρm)− (1 − ρm s̃) EgΩ

)] ∂Ey

∂χ

+ Ω
(
(1 − ρm s̃)− κg(ϕπ − ρm)(1 − ρm)

)∂Ey

∂χ

−
(
1 + Eg(1 − ρm))ρm(1 − s̃

)
Ω

=−
[
(1 − ρm)

(
Ey(1 − ρmζ f ) + κy(ϕπ − ρm)− (1 − ρm s̃)

1 + (1 − ρm)Eg

1 − ρm
Ω
)]

∂Ey

∂χ

−
(
1 + Eg(1 − ρm)

)
ρm(1 − s̃)Ω .

Finally, substituting in for Ω delivers

sgn
∂Mg

∂χ
=−

[
(1 − ρm)

(
Ey(1 − ρmζ f ) + κy(ϕπ − ρm)

)
− (1 − ρm s̃)

(
Ey(1 − ρm) + ρmM

)]
∂Ey

∂χ

− ρm(1 − s̃)
(
Ey(1 − ρm) + ρmM

)
.

The previous expression is a quadratic polynomial in ρm whose roots are the solution to

f̃ (ρm) = ãρ2
m + b̃ρm + c̃ = 0 ,

where

ã = −
(
Eyζ f + κy − s̃(Ey −M )

) ∂Ey

∂χ
+ (1 − s̃)(Ey −M ) ,

b̃ = −
(
−Eyζ f − κy(1 + ϕπ) + s̃Ey −M

) ∂Ey

∂χ
− (1 − s̃)Ey ,

c̃ = −κyϕπ
∂Ey

∂χ
.

Result 8. A sufficient condition for ã to be positive is given by

s ≥ (1 − λ)Γ2

λ + (1 − λ)Γ2 ,

which holds in most calibrations. Additionally, b̃ < 0 and c̃ > 0 applies.
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Proof. To show the first claim notice that one can rewrite

ã = −
(
Eyζ f + κy − s̃(Ey −M )

) ∂Ey

∂χ
+ (1 − s̃)(Ey −M )

= −
(
Ey
(
ζ f − s̃

)
+ κy + s̃M

) ∂Ey

∂χ
+ (1 − s̃)(Ey −M )

= −
(
(1 − s̃)χ + κy

) ∂Ey

∂χ
+ (1 − s̃)Ey +

s̃
s
M

(
−s

∂Ey

∂χ
− (1 − s)Γ

)
.

Evidently, the first two terms are strictly positive if χ ≥ 0 such that a sufficient condition for ã to

be positive is given by

−s
∂Ey

∂χ
− (1 − s)Γ ≥ 0 ⇔ sλ

(1 − λ)Γ
− (1 − s)Γ ≥ 0 ⇔ s ≥ (1 − λ)Γ2

λ + (1 − λ)Γ2 .

To show the second statement, notice that we have

b̃ = −
(
−Eyζ f − κy(1 + ϕπ) + s̃Ey −M

) ∂Ey

∂χ
− (1 − s̃)Ey

= −
(
−Ey

(
ζ f − s̃

)
− κy(1 + ϕπ)−M

) ∂Ey

∂χ
− (1 − s̃)Ey

= −
(
−(1 − s̃)χ − κy(1 + ϕπ)−M

) ∂Ey

∂χ
− (1 − s̃)Ey < 0 ,

where the negative sign follows because of χ ≥ 0. Finally, the sign of c̃ is obvious.

There arise two cases:

1. If the conditions of the previous auxiliary result apply, i.e. ã > 0, b̃ < 0, and c̃ > 0, then f̃ (ρm)

is strictly convex, and attains its minimum at ρmin
m = − b̃

2ã > 0. As a result, we have in this case

two real-valued roots, with ρs
m < 1 and ρl

m > 1, where

ρLR
m = ρs

m =
−b̃ −

√
b̃2 − 4ãc̃

2ã
.

2. If on the contrary ã < 0, b̃ < 0, and c̃ > 0 applies, then f̃ (ρm) is strictly concave, and attains

its maximum at ρmax
m = − b̃

2ã < 0. As a result, we have in this case two real-valued roots, with

ρs
m < 0 and ρl

m < 1, where

ρLR
m = ρl

m =
−b̃ +

√
b̃2 − 4ãc̃

2ã
.

As a result, in both cases it holds that: ∂Mg
∂χ > 0 on ρm ∈ (0, ρLR

m ), ∂Mg
∂χ = 0 if ρm = ρLR

m , and ∂Mg
∂χ < 0

on ρm ∈ (ρLR
m , 1).
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Comparison of Persistence Thresholds

In order to compare the thresholds ρLR
m , ρSR

m regarding output and productivity response, recall

that
∂Mg

∂χ
= −

(
∂Ω
∂χ

M+
y + Ω

∂M+
y

∂χ

)
=

∂Ω
∂χ

My + Ω
∂My

∂χ
.

Let us denote by ρLR
m the threshold value such that ∂Mg

∂χ |ρm=ρLR
m

= 0, and by ρSR
m ∈ (0, 1) the

threshold value such that ∂My
∂χ |ρm=ρSR

m
= 0. Because ∂Ω

∂χ My > 0 ∀ρm ∈ (0, 1), we must have

Ω ∂My
∂χ < 0 evaluated at ρLR

m . From Proposition 7, we know that ∂My
∂χ < 0 on ρm ∈ (0, 1) if ϕπ ≤ κ−1

g

such that no threshold ordering is possible. On the contrary, if ϕπ > κ−1
g , we know that ∂My

∂χ > 0

on ρm ∈ (0, ρSR
m ) and ∂My

∂χ < 0 on ρm ∈ (ρSR
m , 1). As a result, it follows that ρLR

m > ρSR
m in this

case.

B.6 Effects from Progressive Redistribution Policies

B.6.1 Proof Proposition 9

Proof. We show the exogenous and endogenous growth cases separately.

PART I: PROGRESSIVE REDISTRIBUTION UNDER EXOGENOUS GROWTH

Statement (a) If wages are completely flexible, i.e. θ = 0, the labor supply decisions made by

unions is characterized by

νLφ
t ct =

ϵw − 1
ϵw

(1 − α)α
2α

1−α Zt ,

which results in ẑt = φL̂t + ĉt in log-linear terms. Under ẑt = 0, one recovers ŷt = L̂t = ĉt such

that the labor supply equation implies ŷt = 0. The aggregate IS equation then provides us with

the associated real interest rate. On the contrary, if wages are sticky but the monetary authority

replicates the real interest absent nominal rigidity, the equilibrium is characterized by

ŷt = ζ f Et [ŷt+1]− ζr
(
ît − Et [π̂t+1]

)
+ ζτ τ̂D

t − ζτ′Et

[
τ̂D

t+1

]
,

π̂t = κ
(

φL̂t + ĉt
)

.

As ît −Et [π̂t+1] = r̂real
t | f lex, for a given series of shocks {τ̂D

t , Et
[
τ̂D

t+1

]
}, the output series {ŷt, Et [ŷt+1]}

must be – due to the IS equation – equivalent to the one under flexible wages as well.

Statement (b) In the case of nominal wage rigidity, the equilibrium is summarized by

ŷt = ζ f Et [ŷt+1]− ζr
(
ît − Et [π̂t+1]

)
+ ζτ τ̂D

t − ζτ′Et

[
τ̂D

t+1

]
,

π̂t = κ
(

φL̂t + ĉt
)

,

ît = ϕππ̂t ,
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where we have directly used that π̂t = π̂w
t applies. Notice that (ζ f , ζr, ζτ, ζτ′) are defined under

sc = 1. Additionally, ŷt = ĉt applies. Assuming an AR(1)-process on τ̂D
t with persistence ρτ ∈

(0, 1), the output impact multiplier is given by

My =
ζτ − ρτζτ′

1 − ρτζ f + ζrκy(ϕπ − ρτ)
,

where κy ≡ κ(1 + φ). The sign of the denominator is positive if ϕπ > ρτ + (ρτζ f − 1)/(ζrκy),

which is ensured due to ρτ ∈ (0, 1) by local determinacy, i.e. ϕπ > 1 + (ζ f − 1)/(ζrκy). As a

result, the sign of My is determined by the sign of the numerator. We obtain

ζτ − ρτζτ′ =
Eτ

Ey

(
1 − ρτ

[
s̃ − (1 − s̃)

χτ

Eτ

])
=

Eτ

Ey

(
1 − ρτ

[
s̃ − (1 − s̃)

(1 − λ)Γ
λ

])
,

where the second equality follows from substituting in for χτ and Eτ. As a result, we have

ζτ − ρτζτ′ =
Eτ

Ey

(
1 − ρτ s̃ + ρτ(1 − s̃)

(1 − λ)Γ
λ

)
> 0 ,

where the positive sign follows as Ey > 0 and Eτ > 0 if τD > 0. Consequently, My > 0 holds true.

PART II: PROGRESSIVE REDISTRIBUTION UNDER ENDOGENOUS GROWTH

Statement (c) Under flexible prices the equilibrium is summarized by

ŷt = ζ f Et [ŷt+1]− ζr
(
ît − Et [π̂t+1]

)
+ ζg ĝA

t+1 − ζg′Et

[
ĝA

t+2

]
+ ζτ τ̂D

t − ζτ′Et

[
τ̂D

t+1

]
,

ĝA
t+1 =

Ey

1 + Eg
ŷt +

M − Ey

1 + Eg
Et [ŷt+1] +

Eg

1 + Eg
Et

[
ĝA

t+2

]
− Eτ

1 + Eg
τ̂D

t +
Eτ −Mτ

1 + Eg
Et

[
τ̂D

t+1

]
,

ŷt = sc ĉt + (1 − sc)
gA

gA − 1
ĝA

t+1 ,

0 = φL̂t + ĉt .

Together with ŷt = L̂t, the output and endogenous technology multiplier are characterized by

My =
1 − sc

1 + φsc

gA

gA − 1
Mg ,

Mg =
Ey(1 − ρτ) + ρτM

1 + Eg(1 − ρτ)
My −

Eτ(1 − ρτ) + ρτMτ

1 + Eg(1 − ρτ)
.

The first equation implies sgnMy = sgnMg. Substituting the first equation into the latter gives

(
1 − 1 − sc

1 + φsc

gA

gA − 1
Ey(1 − ρτ) + ρτM

1 + Eg(1 − ρτ)

)
Mg = −Eτ(1 − ρτ) + ρτMτ

1 + Eg(1 − ρτ)
.
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As τD > 0 holds, the sign of the right hand side is negative such that the sign of Mg is determined

by its pre-multiplying expression. As a result, sgnMg > 0 if

(1 + φsc)
(

gA − 1
) (

1 + Eg(1 − ρτ)
)
> (1 − sc)gA (Ey(1 − ρτ) + ρτM

)
,

⇔
(1 + φsc)

(
gA − 1

)
(1 − sc)gA >

Ey(1 − ρτ) + ρτM

1 + Eg(1 − ρτ)
. (21)

The derivative of the right hand side with respect to ρτ is given by

∂
(
Ey(1−ρτ)+ρτM

1+Eg(1−ρτ)

)
∂ρτ

=
M (1 + Eg)− Ey(
1 + Eg(1 − ρτ)

)2 .

There are two subcases. First, in the case M (1 + Eg)− Ey ≥ 0, equation (21) holds on ρτ ∈ (0, 1) if

(1 + φsc)
(

gA − 1
)

(1 − sc)gA > M ⇔ 1 + φsc

1 − sc

(
gA − 1

)
> gA − βs(1 − δ) .

The previous equality can be rearranged to

gA > 1 +
1 − sc

sc

1 − βs(1 − δ)

1 + φ
,

which corresponds to the condition stated in the main text. Second, in the case M (1 + Eg)− Ey <

0, equation (21) holds on ρτ ∈ (0, 1) if

(1 + φsc)
(

gA − 1
)

(1 − sc)gA >
Ey

1 + Eg
=

(1 − λ)Γ + λ − λscχ

(1 − λ)Γ
(

1 − sc
gA

)
+ λ(1 − sc)

gA − 1
gA .

After some tedious algebra, the condition can be rewritten as

(1 − λ)Γsc

(
1 − 1

gA

)
+ (1 − λ)Γ

(
1 − sc

gA

)
φsc + λsc(1 − sc)φ > −λsc(1 − sc)χ ,

which applies under the sufficient condition χ ≥ 0.

Statement (d) Under the full HANK-GS economy, the equilibrium is summarized by

ŷt = ζ f Et [ŷt+1]− ζr
(
ît − Et [π̂t+1]

)
+ ζg ĝA

t+1 − ζg′Et

[
ĝA

t+2

]
+ ζτ τ̂D

t − ζτ′Et

[
τ̂D

t+1

]
,

ĝA
t+1 =

Ey

1 + Eg
ŷt +

M − Ey

1 + Eg
Et [ŷt+1] +

Eg

1 + Eg
Et

[
ĝA

t+2

]
− Eτ

1 + Eg
Et

[
τ̂D

t

]
+

Eτ −Mτ

1 + Eg
Et

[
τ̂D

t+1

]
,

π̂w
t = κyŷt − κg ĝA

t+1 ,

ît = ϕππ̂w
t ,
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where price and wage inflation relate according to π̂t = π̂w
t − ĝA

t . As a result, the impact multiplier

are written as(
1 + ζrϕπκy − ρτ

(
ζ f + ζrκy

))
My =

(
ζrϕπκg + ζg − ζr − ρτ

(
ζrκg + ζg′

))
Mg + ζτ − ρτζτ′ ,

Mg = ΩyMy − Ωτ ,

where we have defined the auxiliary parameters

Ωy ≡
Ey(1 − ρτ) + ρτM

1 + Eg(1 − ρτ)
> 0 , Ωτ ≡ Eτ(1 − ρτ) + ρτMτ

1 + Eg(1 − ρτ)
> 0 .

As a result, the output and technology multiplier become

My =
−
(
ζrϕπκg + ζg − ζr − ρτ

(
ζrκg + ζg′

))
Ωτ + ζτ − ρτζτ′

1 + ζrϕπκy − ρτ

(
ζ f + ζrκy

)
−
(
ζrϕπκg + ζg − ζr − ρτ

(
ζrκg + ζg′

))
Ωy

,

Mg =
Ωy(ζτ − ρτζτ′)− Ωτ

(
1 + ζrϕπκy − ρτ(ζ f + ζrκy)

)
1 + ζrϕπκy − ρτ

(
ζ f + ζrκy

)
−
(
ζrϕπκg + ζg − ζr − ρτ

(
ζrκg + ζg′

))
Ωy

.

The denominator of My and Mg is strictly positive if ϕπ is sufficiently large, ensured for instance

through the Taylor principle. To see this, notice that

ζrϕπ

(
κy − κgΩy

)
=

ζrϕπ

1 + Eg(1 − ρτ)

(
(1 + Eg(1 − ρτ))κy − (Ey(1 − ρτ) + ρτM )κg

)
.

As a result, the sign of ζrϕπ

(
κy − κgΩy

)
is a linear function in ρτ. Because of lim

ρτ→0

(
κy − κgΩy

)
=

κy −
Ey

1+Eg
κg > 0 and lim

ρτ→1

(
κy − κgΩy

)
= κy − M κg > 0 such that κy − κgΩy > 0 ∀ρτ ∈ (0, 1).

The second positive sign follows as we consider an upward sloping AS regime, while the first one

follows from

κy −
Ey

1 + Eg
κg =

κ

sc

(
1 + φsc − (1 − sc)

gA

gA − 1
Ey

1 + Eg

)

=
κ

sc

1 + φsc − (1 − sc)
(1 − λ)Γ + λ − λscχ

(1 − λ)Γ
(

1 − sc
gA

)
+ λ(1 − sc)

 ,

where the term inside the brackets can be rewritten as

φsc +
(1 − λ)Γ

(
1 − sc

gA

)
+ λ(1 − sc)− (1 − sc)(1 − λ)Γ − (1 − sc)λ + (1 − sc)λscχ

(1 − λ)Γ
(

1 − sc
gA

)
+ λ(1 − sc)

= φsc +
(1 − λ)scΓ

(
1 − 1

gA

)
+ (1 − sc)λscχ

(1 − λ)Γ
(

1 − sc
gA

)
+ λ(1 − sc)

> 0 .
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As a result, a sufficiently high ϕπ ensures that the denominators of My and Mg are positive.

Consequently, the overall signs are determined by the sign of their numerators. Accordingly, the

sign of My is positive if

ζτ − ρτζτ′ >
(
ζrϕπκg + ζg − ζr − ρτ

(
ζrκg + ζg′

))
Ωτ

=
Eτ(1 − ρτ) + ρτMτ

1 + Eg(1 − ρτ)

(
κg

Ey
(ϕπ − ρτ) + (1 − ρτ s̃)

Eg

Ey

)
,

while the sign of Mg is positive if

ζτ − ρτζτ′ >
(
1 + ζrϕπκy − ρτ(ζ f + ζrκy)

) Ωτ

Ωy

=
Eτ(1 − ρτ) + ρτMτ

Ey(1 − ρτ) + ρτM

(
1 + ζrϕπκy − ρτ(ζ f + ζrκy)

)
.

Case (d.1): No Persistence. In the case of ρτ = 0, the condition on output reduces to

Eτ

Ey
>

Eτ

1 + Eg

(
ϕπκg + Eg

Ey

)
⇔ ϕπ <

1
κg

,

where the last inequality follows from Eτ > 0 under τD > 0. Analogously, the condition on the

sign of the technology multiplier reduces to

Eτ

Ey
>

Eτ

Ey

(
1 + ζrϕπκy

)
,

which is never satisfied for Eτ > 0. We thus have My > 0 and Mg < 0.

Case (d.2): Arbitrary Persistence. Let us denote the threshold values of the previous conditions by

Dy, respectively Dg. Additionally, notice that Dg > Dy applies if

(
1 + ζrϕπκy − ρτ(ζ f + ζrκy)

) 1
Ωy

>
(
ζrϕπκg + ζg − ζr − ρτ

(
ζrκg + ζg′

))
,

which holds as the denominators of (My,Mg) are positive under the HANG-GS Taylor principle.

Consider now the case in which Dg > ζτ − ρτζτ′ > Dy. In this case, we obtain My > 0 and

Mg < 0. Using results from Appendix B.7, one can show that the difference in the level of output

in comparison to a counterfactual unshocked economy can be written as

ln Yt+T − ln YNS
t+T =

T−1

∑
i=0

ρi
τMg + ρT

τMy .
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Using the relation that
T−1
∑

i=0
ρi

τ = 1−ρT
τ

1−ρτ
, the threshold time span T∗ is thus implicitly defined by

1 − ρT∗
τ

1 − ρτ
Mg + ρT∗

τ My = 0 ⇔ ρT∗
τ

(
(1 − ρτ)My −Mg

)
= −Mg ,

which can finally be rearranged to

ρT∗
τ =

1

1 − (1 − ρτ)
My
Mg

⇔ T∗ = −
ln
(

1 − (1 − ρτ)
My
Mg

)
ln(ρτ)

> 0 .

B.7 Definition 1: Scars from Inequality

In Definition 1 we stated that scars from inequality can be simply written in terms of the differ-

ence of the productivity multiplier under HANK-GS relative to one obtained from a counterfactual

RANK-GS economy. We formally derive this result below.

Case I: Transitory Shock. Let us denote the impact output multiplier by ln
(

yt
y

)
= My and the

impact endogenous productivity multiplier by ln
(

gA
t+1
gA

)
= Mg. Consequently, we obtain

ln yt = ln y +My ,

ln Yt = ln At + ln y +My ,

ln gA
t+1 = ln gA +Mg ,

ln At+1 = ln At + ln gA +Mg .

As a result, we obtain for a purely transitory shock occurring in period t

ln Yt+1 = ln At+1 + ln y = ln At + ln y + ln gA +Mg = ln YNS
t+1 +Mg ,

where ln YNS
t+1 = ln At+1 + ln y = ln At + ln y + ln gA denotes the counterfactual output in period

t + 1 in the absence of a shock in period t. Thus, permanent output scars are given by

ln Yt+1 − ln YNS
t+1 = Mg .

Case II: Persistent Shock. Similar to above, one can write the output response ln
(

yt+T
y

)
= ρTMy,
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respectively the endogenous productivity response ln
(

gA
t+T+1
gA

)
= ρTMg. As a result,

ln yt+T = ln y + ρTMy

ln Yt+T = ln At+T + ln y + ρTMy

ln gA
t+T+1 = ln gA + ρTMg

ln At+T+1 = ln At+T + ln gA + ρTMg

Consequently, we can rewrite

ln Yt+T = ln At+T + ln y + ρTMy

= ln At+T−1 + ln gA + ρT−1Mg + ln y + ρTMy

= ln At +
T−1

∑
i=0

ρiMg + T ln gA + ln y + ρTMy

In the absence of shocks, we have ln
(

yNS
t+T
y

)
= 0 such that we can state

ln yNS
t+T = ln y ⇔ ln YNS

t+T = ln ANS
t+T + ln y = ln At + T ln gA + ln y .

Using the former expression, we can rewrite

ln Yt+T = ln At +
T−1

∑
i=0

ρiMg + T ln gA + ln y + ρTMy

= ln YNS
t+T +

T−1

∑
i=0

ρiMg + ρTMy ,

such that the permanent output loss under a persistent shock with |ρ| < 1 is up to first order

lim
T→∞

(
ln Yt+T − ln YNS

t+T

)
=

Mg

1 − ρ
.

Consequently, scars from inequality are computed by

−
MHA

g −MRA
g

1 − ρ
.
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B.8 Social Welfare and Optimal Balanced Growth Path

B.8.1 Social Welfare Criterion The utilitarian social welfare criterion is written as

W = E0

∞

∑
t=0

βt
[
λU
(

CH
t , LH

t

)
+ (1 − λ)U

(
CS

t , LS
t

)]
= E0

∞

∑
t=0

βt
[

λ

(
ln CH

t − ν
(LH

t )
1+φ

1 + φ

)
+ (1 − λ)

(
ln CS

t − ν
(LS

t )
1+φ

1 + φ

)]
= E0

∞

∑
t=0

βt
[

λ

(
ln cH

t − ν
(LH

t )
1+φ

1 + φ

)
+ (1 − λ)

(
ln cS

t − ν
(LS

t )
1+φ

1 + φ

)
+ ln At

]
.

Rewriting the discounted sum of endogenous productivity delivers

E0

∞

∑
t=0

βt (ln At) = E0

∞

∑
t=0

βt
(

β

1 − β
ln gA

t+1

)
+

1
1 − β

ln A0 ,

such that the welfare criterion is given for some A0 by

W = E0
∞
∑

t=0
βt
[
λ
(

ln cH
t − ν

(LH
t )1+φ

1+φ

)
+ (1 − λ)

(
ln cS

t − ν
(LS

t )
1+φ

1+φ

)
+ β

1−β ln gA
t+1

]
+ 1

1−β ln A0 .

The life-time welfare criterion W stated in terms of the per period welfare function Wt reads

W = E0

∞

∑
t=0

βtWt +
1

1 − β
ln A0 ,

Wt = λ

(
ln cH

t − ν
(LH

t )
1+φ

1 + φ

)
︸ ︷︷ ︸

1⃝: hand-to-mouth term WH
t

+ (1 − λ)

(
ln cS

t − ν
(LS

t )
1+φ

1 + φ

)
︸ ︷︷ ︸

2⃝: saver term WS
t

+
β

1 − β
ln gA

t+1︸ ︷︷ ︸
3⃝: endogenous growth term WEG

t

B.8.2 Optimal Redistribution on the Balanced Growth Path In the absence of shocks, the

economy is on the balanced growth path in all periods. As a result, the welfare objective becomes

for a given initial condition A0

max
{τD}

W(τD) = λ ln cH + (1 − λ) ln cS − ν
L1+φ

1 + φ
+

β

1 − β
ln gA .

The first order condition to this problem writes

∂W
∂τD =

λ

cH
∂cH

∂τD +
1 − λ

cS
∂cS

∂τD +
β

1 − β

1
gA

∂gA

∂τD = 0 ,
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For what follows, let us define an auxiliary parameter. As a result, we can rewrite the steady state

as follows

gA = β
(
(1 − τD)ψΘαL + s(1 − δ)

)
,

∂gA

∂τD = −βψΘαL ,

cH = α−1ΘαL
(

1 + α
τD

λ

)
,

∂cH

∂τD =
ΘαL

λ
,

cS = α−1ΘαL
(

1 + α
1 − τD

1 − λ

)
− gA − 1

(1 − λ)ψ
,

∂cS

∂τD = − (1 − β)ΘαL
1 − λ

.

Lemma 2 (SOCIAL WELFARE FUNCTION BGP). The social welfare function is well-defined and strictly

concave on the interval τ ∈
(

τD, τD
)

.

(a) If ψ = 0 such that gA = 1 and β = 0, the bounds are given by

τD = −λ

α
, τD = 1 +

1 − λ

α
.

(b) If ψ > 0 and β > 0, the corresponding bounds are given by

τD = −λ

α
, τD = 1 +

s(1 − δ)

ψΘαL
.

Proof. Statement (a) follows immediately by ensuring that steady state consumption of both house-

holds is strictly positive. Regarding statement (b) notice that the SWF is now well-defined if

cH > 0, cS > 0, gA > 0 applies. The first condition is again satisfied if τD
cH > −λ

α . Analogously,

the condition on productivity growth is satisfied if τD
gA < 1 + s(1−δ)

ψΘα L . Finally, the condition on

consumption of saver households is now satisfied if

cS = α−1ΘαL
(

1 + α
1 − τD

1 − λ

)
− gA − 1

(1 − λ)ψ
= α−1ΘαL + ΘαL(1 − β)

1 − τD

1 − λ
+

1 − βs(1 − δ)

(1 − λ)ψ
> 0

⇔ τD
cS < 1 +

1 − λ

α(1 − β)
+

1 − βs(1 − δ)

(1 − β)ψΘαL
.

To complete the second statement, we show that τD
gA < τD

cS holds. This is indeed the case as

1 +
s(1 − δ)

ψΘαL
< 1 +

1 − λ

α(1 − β)
+

1 − βs(1 − δ)

(1 − β)ψΘαL

s(1 − δ) <
1 − λ

α(1 − β)
ψΘαL +

1 − βs(1 − δ)

1 − β

0 <
1 − λ

α(1 − β)
ψΘαL +

1 − s + sδ

1 − β

applies. Consequently, cS is positive as long as gA is positive. To conclude, the SWF is strictly
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concave as

∂2W
∂τD∂τD = − λ

(cH)2

(
∂cH

∂τD

)2

− 1 − λ

(cS)2

(
∂cS

∂τD

)2

− β

1 − β

1
(gA)2

(
∂gA

∂τD

)2

< 0 ,

where the previous equation holds as cH, cS and gA are linear functions in τD such that their

second derivatives become zero.

Proposition 10 (OPTIMAL BGP REDISTRIBUTION). The following balanced growth path tax result ap-

plies in the absence of exogenous shocks:

(a) If β = 0 and ψ = 0, then τD,∗ = λ such that Γ = 1.

(b) If β > 0 and ψ > 0, then τD,∗ ∈
(

τD, τD
)

is chosen optimally such that Γ > 1, i.e. the social

planner never establishes an egalitarian system. Moreover, there exists β̃ such that for all β > β̃ > β

endogenous productivity grows on the balanced growth path, i.e. gA > 1.

Proof. The proof proceeds in two parts. In the first part, we show how optimal redistribution and

balanced growth path inequality are linked. In the second part, we relate optimal redistribution

to the sign of optimal endogenous productivity growth.

PART I: OPTIMAL REDISTRIBUTION AND BGP INEQUALITY.

The first order condition can be rewritten as

λ

cH
∂cH

∂τD +
1 − λ

cS
∂cS

∂τD +
β

1 − β

1
gA

∂gA

∂τD = 0 ⇔ 1
cH =

1 − β

cS + β
β

1 − β

ψ

gA . (22)

To show statement (a), for β = 0 and ψ = 0 the previous FOC implies that cH = cS. This is the

case if τD

λ = 1−τD

1−λ which implies τD = λ, i.e. the social planner establishes perfect insurance.

To show statement (b), notice that equation (22) characterizes implicitly an unique τ∗,D on(
τD, τD

)
. This is the case, as the left hand side becomes larger than the right hand side for τ → τD

due to cH → 0 while cS and gA converge to a strictly positive number. Contrary, at the upper

boundary τ → τD, the right hand side becomes larger than the left hand side due to gA → 0

while cH and cS converge to a positive number. As the second derivative of the social welfare

function is strictly negative, there exists by the intermediate value theorem a unique solution τ∗,D

that satisfies the first order condition. To show that an egalitarian society is never optimal, we

rewrite the FOC as follows

1
cH(τ∗,D)

=
1

cS(τ∗,D)
+ β

(
− 1

cS(τ∗,D)
+

β

1 − β

ψ

gA(τ∗,D)

)
.

Notice that the left hand side is strictly decreasing in τD, whereas the right hand side is strictly
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increasing in τD. Also, under ψ > 0 and β > 0 there exists a tax value τEQ,D such that cH = cS

applies. Thus, the proof for Γ > 1 is established by showing that the second term on the right

hand side is strictly positive for τEQ,D which implies τ∗,D < τEQ,D.

We thus proceed in two steps. First, we derive explicitly τEQ,D. Second, we verify that

− 1
cS(τEQ,D)

+
β

1 − β

ψ

gA(τEQ,D)
> 0 .

To begin with, τEQ,D is obtained by equating consumption of hand-to-mouth and saver house-

holds, i.e.

α−1ΘαL
(

1 + α
τEQ,D

λ

)
= α−1ΘαL

(
1 + α(1 − β)

1 − τEQ,D

1 − λ

)
+

1 − βs(1 − δ)

(1 − λ)ψ

⇔ τEQ,DΘαL
(

1
λ
+

1 − β

1 − λ

)
= ΘαL

1 − β

1 − λ
+

1 − βs(1 − δ)

(1 − λ)ψ

⇔ τEQ,DΘαL
1 − βλ

λ(1 − λ)
= ΘαL

1 − β

1 − λ
+

1 − βs(1 − δ)

(1 − λ)ψ

⇔ τEQ,D = λ
1 − β

1 − βλ
+ λ

1 − βs(1 − δ)

1 − βλ

1
ψΘαL

> 0 .

Accordingly, we get

1 − τEQ,D =
1 − λ

1 − βλ
− λ

1 − βs(1 − δ)

1 − βλ

1
ψΘαL

.

There arise now two cases. In the first one, τEQ,D ≥ τD such that τ∗,D < τEQ,D applies by con-

struction. This case is the relevant one if the following inequality holds

λ
1 − β

1 − βλ
+ λ

1 − βs(1 − δ)

1 − βλ

1
ψΘαL

≥ 1 +
s(1 − δ)

ψΘαL

⇔ − 1 − λ

1 − βλ
+

1
ψΘαL(1 − βλ)

(
λ − βλs(1 − δ)− (1 − βλ)s(1 − δ)

)
≥ 0

⇔ − 1 − λ

1 − βλ
− s − δ − λ

ψΘαL(1 − βλ)
≥ 0

⇔ − 1
ψΘαL(1 − βλ)

(
ψΘαL(1 − λ) + s − δ − λ

)
≥ 0 ,

which is the case if δ ≥ δ ≡ s − λ + ψΘαL(1 − λ). In the second case, i.e. δ < δ, we have

τEQ,D < τD such that cS(τEQ,D) > 0, gA(τEQ,D) > 0 and thus need to verify the inequality

− 1
cS(τEQ,D)

+
β

1 − β

ψ

gA(τEQ,D)
> 0 ⇔ cS(τEQ,D) >

1 − β

β

gA(τEQ,D)

ψ
.
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Substituting in for τEQ,D we obtain

α−1ΘαL + ΘαL
1 − β

1 − λ

[
1 − λ

1 − βλ
− λ

1 − βs(1 − δ)

1 − βλ

1
ψΘαL

]
+

1 − βs(1 − δ)

(1 − λ)ψ
>

1 − β

β

β

ψ

(
ψΘαL

[
1 − λ

1 − βλ
− λ

1 − βs(1 − δ)

1 − βλ

1
ψΘαL

]
+ s(1 − δ)

)
⇔α−1ΘαL + ΘαL

1 − β

1 − βλ
− λ(1 − β)

(1 − λ)ψ

1 − βs(1 − δ)

1 − βλ
+

1 − βs(1 − δ)

(1 − λ)ψ
>

(1 − β)s(1 − δ)

ψ
+ ΘαL

(1 − β)(1 − λ)

1 − βλ
− λ(1 − β)

ψ

1 − βs(1 − δ)

1 − βλ
.

Rearranging terms results in

α−1ΘαL
(

1 + αλ
1 − β

1 − βλ

)
− λ

1 − λ

λ(1 − β)

ψ

1 − βs(1 − δ)

1 − βλ
+

1 − sβ + sβδ − s(1 − β)(1 − δ)(1 − λ)

(1 − λ)ψ
> 0

⇔ α−1ΘαL
(

1 + αλ
1 − β

1 − βλ

)
− λ

1 − λ

λ(1 − β)

ψ

1 − βs(1 − δ)

1 − βλ
+

sλ(1 − β)(1 − δ) + 1 − s + sδ

(1 − λ)ψ
> 0

⇔ α−1ΘαL
(

1 + αλ
1 − β

1 − βλ

)
− λ

1 − λ

λ(1 − β)

ψ

1 − βs(1 − δ)

1 − βλ
+

sδ + 1 − s
ψ

+
λ(1 − βs(1 − δ))

(1 − λ)ψ
> 0

⇔ α−1ΘαL
(

1 + αλ
1 − β

1 − βλ

)
+

sδ + 1 − s
ψ

+
λ(1 − βs(1 − δ))

(1 − λ)ψ

(
1 − λ(1 − β)

1 − βλ

)
> 0

⇔ α−1ΘαL
(

1 + αλ
1 − β

1 − βλ

)
+

sδ + 1 − s
ψ

+
λ

ψ

1 − βs(1 − δ)

1 − βλ
> 0 ,

where the last strict inequality obviously holds. As a result, we must have τ∗,D < τEQ,D, which

completes the proof of the first statement.

PART II: SIGN ENDOGENOUS PRODUCTIVITY.

To determine the sign of productivity growth under the optimal redistribution schedule, we pro-

ceed in two steps. First, we determine the tax rate τNG,D under which there is no productivity

growth, i.e. gA = 1. Second, we apply a similar argument as under Part I and derive a threshold

value on the discount factor such that the right hand side of the FOC (22) is larger than the left

hand side, implying that τ∗,D < τNG,D and consequently gA > 1. To begin with, the tax value

under which endogenous technology does not grow on the balanced growth path is defined by

gA = β
(
(1 − τNG,D)ψΘaL + s(1 − δ)

)
= 1 ⇔ τNG,D = 1 − β−1 + s(δ − 1)

ψΘaL

Evidently, we have that τNG,D < τD such that gA > 0. Moreover, if τ∗,D < τNG,D we have gA > 1,

and vice versa, if τ∗,D > τNG,D we have gA < 1. From Part I, we know that τ∗,D ∈
(

τD, τD
)

.
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Hence, if τNG,D ≤ τD, we know that gA < 1, as τ∗,D > τNG,D. This is indeed the case if

1 − β−1+s(δ−1)
ψΘa L ≤ −λ

α ⇔ β−1 ≥ ψΘaL + s(1 − δ) + λψα−1ΘaL ⇔ β ≤
(
ψΘaL α+λ

α + s(1 − δ)
)−1 .

Hence, if β ≤ β ≡
(
ψΘaL α+λ

α + s(1 − δ)
)−1 we have gA < 1. Remember that the first order

condition is given by
1

cH =
1 − β

cS + β
β

1 − β

ψ

gA .

As a result, if the inequality

1
cH(τNG,D)

<
1 − β

cS(τNG,D)
+ β

β

1 − β

ψ

gA(τNG,D)

applies, then τ∗,D < τNG,D such that gA > 1. Substituting in for τNG,D results in

1

α−1ΘαL
(

1 + α
λ

ψΘα L−β−1+s(1−δ)
ψΘα L

) <
1 − β

α−1ΘαL
(

1 + α
1−λ

β−1+s(δ−1)
ψΘa L

) +
β2ψ

1 − β
.

The left hand side of the previous equation is strictly positive if β > β. Thus, if β → β the previous

inequality does not hold as the left hand side converges to infinity, whereas the right hand side

converges to a positive finite number. Contrary, if β → 1, then the right hand side converges to

infinity wheres the left hand side converges to a positive number. As a result, there exists at least

one β threshold and we denote by β̃ the largest one.
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C Quantitative Appendix

C.1 Derivation Wage NKPC

To ease comparability with the tractable model, we derive the NKPC by assuming that unions

maximize the following representative household utility

∞

∑
t=0

(
t

∏
s=0

β̃s

)[(
u
(
Ct
)
− ν(Lkt)

)
− θ

2

(
Wkt

Wt−1,k
− gA

)2
]

,

where the demand for employment tasks is Lkt =
(

Wkt
Wt

)−ϵw
Lt and Wt =

(∫
W1−ϵw

kt dk
) 1

1−ϵw is the

price index for aggregate employment services. Under the above specification, the Phillips curve

is given by

ϵw

θ
Lt

(
ν′(Lt)− u′(Ct)wt

(ϵw − 1)
ϵw

(
1 − ∂T (Yd)

∂Yd

))
= πw

t (π
w
t − gA)− β̃

[
πw

t+1(π
w
t+1 − gA)

]
.

If we further assume that the adjustments costs are given by θ
2

(
Wkt

Wt−1
− gA

)2
, we recover a static

Phillips curve of the form

ϵw

θ
Lt

(
ν′(Lt)− u′(Ct)wt

ϵw − 1
ϵw

(
1 − ∂T (Yd)

∂Yd

))
= πw

t (π
w
t − gA) .

In both cases, we the steady-state is characterized by

L = ν−1
(

u′(C)wt
ϵw − 1

ϵw

(
1 − ∂T (Yd)

∂Yd

))
.

In Online Appendix OA3.1, we also provide alternative NKPC specifications in which we addi-

tionally integrate a heterogeneous hours worked and unemployment incidence. The results turn

out to be qualitatively similar.

C.2 Computational Algorithm

We detail the algorithm in the following consecutive steps.

1. Initialize a full dimension grid space over liquid asset values b, the productivity level h, the

relative stock of innovations a, the discount rate β, and the employment status e.

2. Guess an initial vector of prices, quantities and growth rate {rt, Lt, gA
t+1}. Compute the implied

wage rate wt.

3. Given prices, solve the household’s consumption-saving problem. To do so, we use a modified
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version of the EGM algorithm introduced by Carroll (2006).

Moreover, the optimal innovative investment amount x satisfies the first order condition

∂I(a′, b′, s′, x)
∂x

= 0

⇔ ∂I(a′, b′, s′, x)
∂x

= p′x(x)

[
EV

(
a′ + ι, b′ − ψ(x)

gA
t+1

, s′
)
− EV

(
a′, b′ − ψ(x)

gA
t+1

, s′)

)]

+

(
−∂ψ(x)

∂x

)
1

gA
t+1

(
(1 − px(x))EVb

(
a′, b′ − ψ(x)

gA
t+1

, s′
)
+ px(x)EVb

(
a′ + ι, b′ − ψ(x)

gA
t+1

, s′
))

= 0 ,

which we solve by using a standard one-dimensional Newton algorithm that relies on numer-

ical derivatives.

4. Construct the transition matrix M generated by Ph, Pβ, Pe, and a′(s), b′(s), x(s). Compute the

associated stationary measure of individuals G(s) by first guessing an initial distribution, and

then by iterating on G ′(s) = MG(s) until convergence.

5. Compute new prices, back to step 2 and iterate until convergence on the equilibrium prices is

reached.

Transitional Dynamics The algorithm follows the standard MIT shock solution procedure. We

first guess a sequence of prices
{

rt, gA
t+1

}
and shocks and solve for the policy function backward by

starting with a final guess of prices until period t = 0. Then, we solve forward for the distribution

Gt starting at period t = 0 and using the steady-state stationary distribution as initial condition.

With a relaxation, we update the vector of prices and quantities using the aggregate model-

implied conditions and the NKPC. The interest rate rb
t is adjusted to clear the bond market. The

growth rate follows from the law of motion of innovative investments. Along the transition, we

also adjust taxes or government debt depending on which variable adjusts to balance the govern-

ment budget constraint.

C.2.1 Government Budget Constraint: Debt Financing When the government issues debt to

close its budget constraint, we assume that there is a jump in lump-sum transfers Tt in the initial

period t = 1 of the transition. The transfers then smoothly decay at a rate ρT ∈ (0, 1). Provided the

model structure, this jump can be computed using the present value of the government budget

constraint, such that

Tt =

B
A

(
gA

t+z − (1 + rt)∏z−1
s=1

(1+rt+s)
gA

t+s

)
−
(

∑z−2
j=0 P

de f ,T
t+j ∏z−1

s=j+1
(1+rt+s)

gA
t+s

+ Pde f ,T
t+z−1

)
(

∑z−2
j=0 (ρT)j ∏z−1

s=j+1
(1+rt+s)

gA
t+s

+ ρz−1
T

) ,

where Pde f ,T
t = T

y
t + TD

t + Tb
t − Gt

At
− St − rb

t
BG

t
At

is the primary deficit excluding transfers Tt.
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C.2.2 Government Budget Constraint: Non-Monotonous Tax Incidence The functional form

for the tax incidence used throughout the paper allows to target specific income groups. We illus-

trate this in Figure 11 for two pairs of values of the scale parameter y1 and the constant y2. For

each y1, the parameter y2 endogenously adjusts to balance the government budget constraint. It

is evident that a higher y1 monotonously shifts the tax incidence on richer income deciles.

Figure 11. Tax schedule under heterogeneous tax incidence.
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Legend: Figure (a) illustrates an incidence on the bottom-middle income groups. Figure (b) illustrates a tax
incidence on top-middle income groups.

C.3 CPS Data - Additional Results

Figure 12. Variation of unemployment rate and hours worked within h-group

All population
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C.4 Multiplier as a Function of Income Tax Incidence

The left panel displays the annualized response of normalized output Yt/At and technology

growth gA
t+1 after the UI expansion in function of the income tax incidence. The right panel dis-

plays the implied output loss relative to the unshocked economy at different time horizon in func-

tion of the income tax incidence. The highest output level after ten years is achieved when taxing
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middle class households, i.e., the fifth income decile.

Figure 13. Multiplier as a function of tax incidence and resulting output deviation at different horizons.
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C.5 Effects of Heterogeneous Tax Incidence Including Top 1% Income Tax

Figure 14. Heterogeneous tax incidence and the short- and long-run effects of a temporary UI extension.
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Remark: This figure is similar to the one in the main paper. Dots still refer to successive income deciles,
whereas the last dot represents now the tax incidence on the top 1% income group.
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