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Abstract

We analyze the welfare effects of producer market power in frameworks with free entry and
endogenous technical change. We show that the social planner cannot move the economy
to the social optimum by simply eliminating firm market power in such settings. Thus, we
suggest a second-best equilibrium concept that separates the welfare effects of markups from
the impact of externalities generated by firms’ investment and the inefficiencies associated with
the decentralized entry. In addition, we decompose the distance to the first-best allocation into
terms that separately measure the costs of sub-optimal markup distribution and sub-optimal
investment policies. Our estimates indicate that the welfare losses due to market power are
significant: the social planner can increase welfare by 20% by resetting markups to their socially
optimal values. Sub-optimal markup distribution also accounts for 61% of the distance to the
first best. We also analyze the evolution of misallocation in the US economy over the last four
decades. We show that welfare costs of market power did not change significantly from 1980
to 2017. In order to calibrate our model, we re-estimate markups using a methodology that
delivers consistent estimates under endogenous product prices and technical change. We find
that the standard methodology underestimates the upward trend in markups by 5-10%. Our
results suggest that the average cost-weighted markup in the US economy has increased by
19-24% over the last three decades.
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1. Introduction

“We do not live on the Pareto frontier, and we are not going to do so in
the future. Yet policy decisions are constantly being made which can
move us either toward or away from that frontier.”

Harberger (1964), The Measurement of Waste

Recent studies have documented several secular trends that are consistent with an increase in the
market power of large US companies. Among these trends are the rise in concentration, the fall of the
labor share, the decline in business dynamism, and the increase in markups. These findings raise concerns
about the increasing influence of superstar firms in the US economy, and assessing the effects of the rise of
large firms is a non-trivial task. To evaluate the welfare costs of market power, one needs to account for a
variety of channels through which markups affect social welfare. Since Smith [1776], we know that the
profit-maximizing behavior of large companies is rarely beneficial for the society in partial equilibrium
models. However, the studies that analyze the economies with multiple sources of inefficiencies – e.g., the
settings with free entry, economies of scale, or endogenous technological progress – offer a more nuanced
perspective. A certain degree of market power might be beneficial for consumers because markups can
counteract the effects of other frictions. For example, [Aghion et al., 2005] provide evidence in favor of
an inverted-U relationship between competition and productivity growth. Although faster productivity
growth does not necessarily generate an increase in consumer utility, we would expect Aghion et al. [2005]
result to hold for welfare, as long the one-period output does not increase too steeply in the degree of
competition. Relatedly, once we leave aside partial equilibrium settings, the impact of markups on welfare
cannot be measured by computing the distance to the Pareto-efficiency frontier. In order to accurately
evaluate the social cost of market power, we need to separate it from the effects of other inefficiencies.

This study’s primary purpose is to analyze the welfare effects of producer market power in the settings
that feature endogenous technological progress and business dynamics. We start our analysis by building
a general framework that flexibly models market power, innovation, and entry. We consider a discrete-
time economy with a continuum of oligopolistic sectors. In this setting, product lines differ in relative
productivity and relative stocks of fixed assets. Firms are heterogeneous in terms of the number of products
they own and their goods’ types. Firm types follow a general Markov process, and their inter-temporal
dynamics depend on the firm-level investment. The production process in our model involves both static
inputs, represented by production labor and dynamic inputs. Overall, the setup of our model is quite general,
and it encompasses many existing growth frameworks, including Romer [1990], Grossman and Helpman
[1991b], and Klette and Kortum [2004].

In this project, we analyze the behavior of economies that move along balanced growth paths. On the
decentralized balanced growth path, firms determine the investment and production employment levels,
and consumers set the demand for final goods. In the first-best equilibrium, the social planner allocates
dynamic and variable inputs to maximize social welfare, subject to technology constraints. To separate
the impact of markups from the effects of other frictions, we also construct a second-best equilibrium
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that preserves the structure of the decentralized balanced growth path and, at the same time, features a
”socially-optimal” assignment of market power. The optimal distribution of market power is a distribution of
markups that maximizes social welfare conditional on the laissez-faire industrial policy, without investment
or entry subsidies. We then evaluate the welfare losses due to ”sub-optimal” market power by computing the
distance between the decentralized allocation and the allocation achieved under the second-best optimum.
This theoretical exercise is similar to the analysis performed in Dixit and Stiglitz [1977] as well as Baqaee
and Farhi [2020b] and Baqaee and Farhi [2020a], who evaluate welfare losses due to misallocation in
static settings. Importantly, the second-best optimum construct allows us to separate the welfare effects of
market power from the effects of other frictions that include the entry wedge and various pecuniary and
non-pecuniary externalities. In addition, we also consider a balanced growth path equilibrium in which
the social planner can only alter investment values, but not the distribution of markups across final goods.
The distance between this alternative second-best allocation and the first best is another measure of the
importance of markups.

We show that in our framework, all balanced growth path allocations can be characterized concisely in
terms of the equilibrium Markov chain transition kernel, the entrant type distribution, and variable surplus
function that summarizes the results of short-run firm optimization. These objects comprise the set of
sufficient statistics that define the reaction of social welfare, output, and productivity growth to friction
and technology shocks in the models with endogenous productivity and input dynamics. We then describe
the decentralized equilibrium, the first-best and second-best allocations in detail. The social planner can
implement the first best only if they can alter both the values of markups and investment allocation. In the
first-best equilibrium, markups are constant across producers, and their value depends only on the elasticity
of the aggregate welfare with respect to producer mass and the aggregate profit rate. The social return of
firms’ investment depends primarily on the elasticity of the equilibrium firm-type density with respect to
R&D, capital expenditures, and expenditures on intangibles. Importantly, our analysis demonstrates that
the social return to firms’ investment is generically not equal to the private return, even in the absence of
knowledge spillovers and other non-pecuniary externalities. On the second-best balanced growth path,
the social planner uses markups to reduce investment and variable inputs misallocation. The resulting
markup levels differ across the producers. The deviation of the second-best markups from their average
level depends on social and private returns on the producer’s investment.

Apart from computing the distances between the first-best, second-best and decentralized equilibria, we
also endeavor to find out why market power causes misallocation. In other words, we analyze the channels
through which markups affect welfare. First, we decompose the welfare losses due to market power into
two welfare differentials associated with the misallocation of static and dynamic inputs, i.e., production
labor and investment. This exercise allows us to directly compare the predictions of our model to the results
of studies that feature static settings or dynamic settings without endogenous productivity dynamics or
dynamic inputs. Furthermore, we show that investment misallocation affects welfare via four different
mechanisms. First, lower investment levels have a direct effect on aggregate productivity growth and capital
stock. Second, in the settings with product innovation, under-investment decreases the number of varieties
available to consumers. The distribution of firm-level investment also determined the distribution of firm
and product types. Thus, changes in firms’ R&D intensity or capital expenditure lead to the reallocation of
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sales and output across firm types. Similarly, changes in the type distributions also affect the allocation of
variable inputs. We examine the importance of all these channels for the aggregate misallocation and the
social costs of market power. We also provide a first-order policy-based decomposition for the distance to
the first-best allocation: we separately evaluate the welfare effects of the ”sub-optimal” markup distribution
and the sub-optimal investment policies.

To quantify our theoretical results, we calibrate our model using firm-level Compustat data, BDS
data on entry and exit of firms, and aggregate data on output and population growth in the US. We want
to analyze the evolution of misallocation in the US economy, and thus we consider two data samples
that correspond to the early (1982-1997) and late (2002-2017) periods. The results of our counterfactual
exercises are as follows. First and foremost, our analysis indicates that the costs of producer markups
are high, regardless of the time period or the method used to measure the social cost or market power.
For the late data sample, the social planner can increase social welfare by 20% by resetting markups to
their second-best levels. The second-best equilibrium in which the social planner can alter investment also
generates a 20% increase in social welfare. Moreover, misallocation due to market power accounts for 61%
of the distance to the Pareto-efficiency frontier in the late sub-period. This means that conditional on the
socially-optimal investment allocation, the welfare cost of sub-optimal markup distribution is equal to 22%.
The second-best results for the early period are similar. The distance between the benchmark second best
and the decentralized allocation is equal to 21%. If the social planner sets investment subsidies instead
of markups, they can improve their objective by 18%. In contrast, the first-order decomposition of the
distance to first best indicates that, in the early sub-sample, market power accounts only for 17% of total
misallocation. Equivalently, the social cost of markups is equal to 6%.

Notably, in both sub-periods, the average values of the second-best markups are higher than in the
decentralized equilibrium, and so is the markup variance. A closer look at the second-best markup values
reveals that the mechanisms that determine the socially-optimal market power assignment differ across
time periods despite similar magnitudes of welfare differentials. In the 1982-1997 sub-sample, the social
planner uses markups primarily to ensure that entry and the allocation of variable factors of production are
efficient. The resulting markup values are negatively correlated with the product TFP and capital stock
and positively correlated with the entry rates into respective product types. Such a distribution of market
power encourages entry and increases large companies’ cost shares and relative output. In contrast, in
the late sub-sample, the social planner sets markups to induce firms to invest more in productivity and
intangibles. In this case, the second-best markups increase with firm size and product state variables
(TFP and capital). Accordingly, the primary source of second-best welfare gains in the late sub-sample is
increased productivity growth, not the reallocation between production and entry. We hypothesize that
the origin of these differences across periods is the increase in the importance of intangible assets in the
determination of firm productivity and the subsequent rise in TFP dispersion. In our calibrations, the degree
of under-investment rises significantly between the early and late sub-samples. Thus, the motivation of
the social planner changes when they decide on the second-best markup values. It is likely that these
differences in the production and innovation processes also determined the differences in the results of the
first-best decomposition. The higher markups we observe in the late sub-sample are indeed more costly for
society if the social planner can separately reset the investment rates to their optimal values.
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A secondary contribution of this project consists of re-estimating the marginal1 markup levels for the
US economy using a methodology that generates consistent estimates of output elasticities in the presence
of market power and endogenous TFP dynamics. Following Griliches and Regev [1995], Bond et al. [2021]
show that conventional production function estimation methods deliver biased estimates whenever firms’
sales are used as a measure of physical output and whenever firms set prices strategically. Moreover, while
the standard proxy function approach can resolve the issue of the output price bias, it is challenging to
construct a perfect proxy for output prices even in the simplest settings with Cobb-Douglas production and
CES demand. In particular, we show that the proxy function strategy employed by De Loecker et al. [2020]
is not valid in such settings. In order to derive consistent estimates of marginal markups, we employ the
methodology that builds on the insights of Griliches and Regev [1995], De Loecker et al. [2016] and Gandhi
et al. [2020]. Specifically, we use intertemporal and cross-sectional variation in the sectoral output levels at
a 5-digit industry level to pin down the elasticity of substitution between products. In addition, we allow for
the endogenous evolution of firm productivity in our production function estimation routine. Our results
indicate that over the period from 1980 to 2017, the average cost-weighted markup increased by about
19-24% percentage points, as compared with a 14% increase suggested by the standard De Loecker et al.
[2020] methodology. The output price bias has a modest effect on the markup estimates and their dynamics.
In contrast, incorporating the endogenous determinants of firm productivity amplifies the markup trend by
2-6% depending on the specification.

1.1. Literature Review

This paper is connected to several strands of macro and IO research that focus on the phenomenon of
market power, its origins and consequences.

[Welfare Effects of Market Power: Settings w/o Growth ] The economic literature that relates
producer market power to welfare outcomes has an impressively long history. The notion that the mo-
nopolist’s behavior is harmful to consumers goes back at least to Smith [1776], and since then numerous
studies, including Lerner [1934], Harberger [1954], and Dixit and Stiglitz [1977], have contributed to the
field. In the model with CES demand and free entry, Dixit and Stiglitz [1977] find that the monopolistically
competitive equilibrium generates an optimal allocation if the social planner cannot use lump-sum subsidies.
Among recent studies, Restuccia and Rogerson [2008] analyze the effects of distortionary policies on welfare
in a dynamic setting with aggregate capital accumulation. In their quantitative exercises, Restuccia and
Rogerson [2008] show that the introduction of taxes and/or subsidies that increase price dispersion across
producers can lead to up to 50% loss in aggregate output and TFP. Hsieh and Klenow [2009] provide a
measure of allocative efficiency for a one-sector economy with the Cobb-Douglas production. In their
applications, the authors show that distorted allocation of resources in China and India lead to the significant
reduction in aggregate TFP levels. Baqaee and Farhi [2020b] evaluate the losses from misallocation in a
general equilibrium multi-sector setting with production networks. Baqaee and Farhi [2020a] consider a
more general static setting with multiple entry types and show that the values of markups that implement
1A marginal markup is equal to the ratio of the product price to its marginal cost. An average markup is equal to the ratio of price
and the product’s average cost.
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the socially efficient allocation depend on the intensity of economies of scale. Similar to their earlier study,
the authors find that the losses due to the misallocation are large. They also suggest that the presence of
entry amplifies the misallocation effects. In contrast to Baqaee and Farhi [2020b] and Baqaee and Farhi
[2020a], Edmond et al. [2021] setting features a dynamic economy with entry and endogenous capital
accumulation. Despite the endogenous dynamics of capital stock and producer masses, the effects of market
power in Edmond et al. [2021] are rather similar to the static settings with entry since there is no firm-level
investment in either fixed assets or productivity. Capital is owned and accumulated by consumers and
rented out by firms in each period. Thus, in Edmond et al. [2021] setting, both capital and labor act as
variable inputs in the production of final goods, and market power leads to both under-employment of
workers and under-usage of capital goods.

In terms of the welfare analysis, all the studies discussed above compare a decentralized equilibrium
with a specific set of frictions and markups to a first-best optimum, implemented with a set of subsidies and
taxes. Notably, both Baqaee and Farhi [2020a] and Edmond et al. [2021] rely on either lump-sum subsidies
or non-linear subsidies that act as lump sum to implement the socially-efficient allocations. Thus, while
the exercises implemented in Baqaee and Farhi [2020a] and Edmond et al. [2021] are certainly insightful,
they might not provide us with an accurate estimate of the costs of markups. Market power is not the only
friction in these settings: in the absence of strategic pricing behavior by firms, the first-best allocation is
not feasible. In other words, if the social planner was only able to assign prices to firms’ products, and if
the other tools, such as the lump-sum transfers, were not available, the social planner would not be able
to implement the social optimum. Thus, we suggest that it is inaccurate to label the difference in welfare
levels between the social optimum and the decentralized allocation as the welfare cost of market power.
Accordingly, in our analysis, we use a second-best optimum to pin down the welfare losses due to market
power.

[Welfare and Market Power under Endogenous Growth] The literature on welfare and market
power in endogenous growth settings is much younger than the studies that consider static settings.
Grossman and Helpman [1991a] show that whenever firms can invest in the quality of their goods, the level
of markups in the decentralized equilibrium could be either above or below the social optimum. At the
same time, the authors also find that the CES markups generate socially-optimal allocation if the aggregate
output growth is generated only by the expansion in the number of final goods, as in Judd [1985]. Aghion
et al. [2005] provide evidence in favor of an inverted-U relationship between competition and productivity
growth. Although faster productivity growth does not necessarily generate an increase in consumer utility,
we would expect Aghion et al. [2005] result to hold for welfare, as long the one-period output does not
increase too steeply in the degree of competition. Since then, the economic studies in this field have focused
on evaluating the effects of various shocks on macro-outcomes, including the entry rate, productivity
growth, and aggregate output. This branch of literature includes Aghion et al. [2019], Akcigit and Ates
[2019], and Cavenaile et al. [2020]. While our analysis generates predictions about the origins of the rise
of market power and the decline in business dynamism by construction, the primary focus of this study
is on the welfare analysis of observed changes in markup levels and firm dynamics. To the extent of our
knowledge, Cavenaile et al. [2020] is the only paper that attempts to evaluate the impact of the rise of
market power on the aggregate misallocation. The authors find that the social welfare at the Pareto frontier
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is more than 120% higher than in the corresponding decentralized equilibrium. In contrast to Cavenaile
et al. [2020], we aim to evaluate misallocation due to market power separately from the effects of other
distortions.

[Origins of the Rise of Market Power and the Decline in US Business Dynamism] Davis et al.
[2012] were the first to document a decline in “the pace of worker flows” in the US, and later on, the
discussion shifted towards age and growth dynamics on the firm side. From the moment when economists
discovered a decline in US “business dynamism,” the academic economists linked it to the rise in market
concentration, as in Hathaway and Litan [2014]2, and later on – to the rise in producer market power. A
variety of explanations for these phenomena have been proposed in the literature. One of the prevalent
hypotheses, developed in Bessen [2017], Crouzet and Eberly [2019] and de Ridder et al. [2019] focuses
on changes in firms’ production structure, and specifically, on the rise in the importance of intangible
assets for the production decisions of US firms. Pugsley and Sahin [2019] suggest that the fall in the entry
rates is a primary reason for a decline in the worker flows. A range of studies, including Karahan et al.
[2019], Hopenhayn et al. [2018], Engbom et al., Peters and Walsh [2019], suggest that the decline in the
US population growth rate has led to firm aging and the rise of industry concentration in US. Most of the
trends mentioned above are also analyzed in Akcigit and Ates [2019] who propose that the secular trends
are due to the decline in knowledge externalities between market leaders and laggards.

[Markups and Production Function Estimation] Finally, here we also need to mention the literature
on the markup measurement and production function estimation. The increase in markups has been
documented by several studies, including De Loecker et al. [2020] and Hall [2018], among others. Multiple
other studies have confirmed the qualitative findings of De Loecker et al. [2020] and Hall [2018] under
different assumptions on the production structure and the nature of inputs. However, the magnitudes of
the aggregate rise in markups vary significantly across the studies. Recently, Bond et al. [2021] emphasize
the importance of the output price bias in the production function and markup estimation. In our markup
estimation methodology, we rely on the approach of Klette and Griliches [1996] to address this issue.
Instead of using firm sales shares as proxies for the price variation, as suggested by De Loecker et al.
[2020], we always specify a functional form for the demand system, and we estimate the parameters of
consumer preferences jointly with production functions. We also augment the standard production function
estimation routine to allow for the endogenous dynamics of firm productivity, in line with [Buettner, 2004]
and Doraszelski and Jaumandreu [2013].

1.2. Roadmap

The rest of this paper proceeds as follows. Section 2 presents a toy model that illustrates the challenges
we face in measuring the welfare effects of markups and our approach to addressing them. Section 3 lays
out the setting of the general model. Section 4 describes equilibrium allocations for the decentralized
equilibrium and socially-optimal balanced growth paths. Section 5 contains our theoretical results on
welfare decompositions and comparative statics. Sections 6 and 7 describe the data we use in our structural
2On the rise in concentration, see Gutiérrez and Philippon [2016], Gutiérrez and Philippon [2017] and Grullon et al. [2019].
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estimation exercises and the corresponding estimation strategy. In Section 8, we present the structural
estimation results. Section 9 concludes.

2. Toy Model

This section presents a toy model that demonstrates our approach to evaluating the welfare effects of
market power in frameworks with free entry and endogenous evolution of firm productivity. We argue that
in such settings, the distance to the first-best allocation is not an accurate measure of welfare losses due to
markups. We then suggest a second-best equilibrium concept that allows us to isolate the impact of market
power on social welfare. We argue that the distance to the second-best allocation is a more appropriate
measure of the costs associated with producer market power.

2.1. Toy Model: Setting

We consider a discrete time economy with one production sector. Final goods are produced by a mass M
of monopolistically competitive firms, and the consumer’s preferences across final good varieties are given
by a CES(σ) aggregator:

Yt =

(∫
M

(yθt)
1− 1

σ dθ
) σ

σ−1

. (1)

The representative consumer also has CRRA inter-temporal preferences with an inverse elasticity of
substitution ϑ:

W0 =
∞∑
t=0

e(−ρt) (Yt)
1−ϑ

1− ϑ
. (2)

In each period, the consumer supplies one unit of labor to producers.

Firm production function is given by yθt = aθtlθt for firm θ at time t. aθt denotes firm’s productivity,
and lθt – the amount of employed labor. We assume that initially all firms have the same level of TFP.
Incumbent firms exit the production sector at an exogenous rate δ.

There is an unlimited mass of potential entrants. Entry entails a cost LE that is measured in terms of
labor units. Upon entry, firms are assigned a productivity level equal to the average TFP in the industry.
In conjunction with our assumption on the initial TFP distribution, this implies that producers in this toy
model setting are homogeneous: in each period, they have the same productivity level, employ the same
number of workers in production, and invest at the same rate.

The evolution of firm productivity (aθt) is deterministic:

aθ(t+1) = (1 + zθt)
ωaθt, (3)

where ω is a fixed constant, and zθt represents investment of firm θ in period t, in terms of labor units.
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2.2. Toy Model: Balanced Growth Path Analysis

In this section and the rest of the paper, we analyze the behavior of economies that move along balanced
growth paths so that all the cross-sectional distributions are time-invariant, and all the average or aggregate
variables grow at constant rates. In particular, the shares of labor allocated to production (ΛY ), investment
(ΛZ ), and entry (ΛE) are constant. The balanced growth paths that we consider include the decentralized
equilibrium, the first best, and the second-best. In this section, we omit time subscripts on all endogenous
variables because we only consider balanced growth paths. Similarly, firm-type subscripts are omitted
because producers are homogeneous.

[First Best] The first-best is defined as the balanced growth path that generates the highest possible
welfare for consumers, subject to technology restrictions and labor market clearing. The first-best allocation
can be described as follows

Proposition 2.1. Suppose ω is small enough. The first-best balanced growth path exists, and it is unique. On
the socially optimal balanced growth path, the labor shares solve

ΛY,FB = 1− 1

σ
,

ΛZ,FB = ω
z

1 + z

(
1− 1

σ

)
ΛF ,

ΛE,FB = 1−
(
1− 1

σ

)(
1 + ωΛF z

1 + z

)
.

(4)

Here ΛF = exp−ρ+(1−ϑ)(1+z)ω

1−exp−ρ+(1−ϑ)(1+z)ω is the contribution of future periods’ consumption to social welfare.

The intuition behind the first-best allocation is relatively straightforward. The share of production
labor is pinned down by the tradeoff between the mass of producers M and per-firm output proportional to
l. If each firm in the economy employs more workers, there should be fewer firms overall. This is essentially
the same principle that pins down the optimal resource allocation in Dixit and Stiglitz [1977]. The share of
investment labor is proportional to the elasticity of future productivity with respect to investment ω z

1+z ,
and the weight of future periods’ consumption in welfare ΛF . The entry share is a residual.

[Implementation of First Best] Several sets of policies can implement the first-best allocation. In all
the cases, to reach the social optimum, the social planner would need to alter producers’ incentives in both
short-term and dynamic optimization problems. They could do so by using a combination of an output
tax and an investment subsidy. Alternatively, a combination of output tax and an entry subsidy/tax would
also work. To note, if we allow the social planner to control markups instead of imposing output taxes, the
value of the optimal markup would not be equal to either the standard CES markup σ

σ−1 , or the value that
implements first-best allocation.

[DecentralizedAllocationwith FixedMarkups]Now let us characterize the decentralized allocation
that is generated under a fixed producer markup µ ≥ 1. In this case, it is convenient to fix the markup
value because the allocation that we derive below describes both the actual decentralized equilibrium, in
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which firms set prices, and the second-best optimum, in which the social planner sets the markup. We
discuss the second-best equilibrium concept in more detail in the next paragraph.

Solving for the decentralized labor allocation, we get:

Proposition 2.2. Suppose the markup is is equal to µ. Then, the decentralized allocation solves

ΛE,µ = ΛZ,µδ

(
1 +

1

ΛFπ

)(
1

ω (σ − 1)

(
1 +

1

z

)
− ΛFπ

)
,

ΛZ,µ = ΛY,µω (σ − 1) (µ− 1)
zΛFπ

1 + z
.

(5)

ΛFπ = (1−δ) exp−r

1−(1−δ) exp−r is the contribution of future profits in the producer objective. The decentralized balanced
growth path always exists and is unique.

It is important to highlight the source of inefficiencies that generate the difference between the first-best
and decentralized allocations in this setting. To ensure that the firms are homogeneous, we have assumed
that the entrants have a productivity level equal to the average TFP in an industry. In the presence of
such knowledge spillovers, the incumbents’ investment choices are generically sub-optimal since the social
returns on investment differ from the private returns. This discussion is similar to the welfare analysis
presented in Grossman and Helpman [1991a] that suggests that the Dixit and Stiglitz [1977] result on the
optimality of CES markups does not extend easily to the settings with endogenous productivity growth.
Similar to canonical growth frameworks, our toy model also features business stealing and consumer
surplus externalities. By now, multiple studies have shown that these externalities offset each other in the
settings with CES demand and free entry3. Once we add firm-level innovation and dynamic inputs to the
setting, the balance between business stealing and consumer surplus externalities is no longer optimal4.

Importantly, Propositions 2.1 and 2.2 lead to a following useful observation

Corollary 1. The ratios ΛZ,FB/ΛE,FB and ΛZ,µ/ΛE,µ

(i) do not depend on the markup value µ;

(ii) are generically not equal to each other.

This corollary suggests that we can never reach the first-best allocation if we can only alter the markups
on final goods. The investment in this setting is fixed, conditional on the entry cost, consumer preference
parameters, TFP elasticity ω, and exit rate δ. Homogeneity of producers is crucial for this result. In the
equilibrium, firm investment is proportional to the producer value function that is constant across firms.
Furthermore, the free entry condition implies that the value of producer profits is proportional to the entry
cost. This means that only the values M and l react to the markup shocks, the mass of producers, and
per-firm employment readjust to keep the ratio ΛZ,µ/ΛE,µ constant. Figure 1 depicts the labor allocation
for two different levels of markups.
3Such results are presented, e.g., in Dixit and Stiglitz [1977], Grossman and Helpman [1991a], and Bilbiie et al. [2019].
4This is evident from the fact that in the settings similar to Atkeson and Burstein [2010] the first-best allocation is different from
the decentralized equilibrium. Proof is provided upon request.
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Figure 1: Toy Model: Labor Allocation Under Different Markup Values

ΛY

ΛZ

ΛE

(a) Low Markup

ΛY
ΛZ

ΛE

(b) High Markup

[Second Best] We define the second-best allocation as the solution to the following optimization
problem:

max
µ

W =
(l)1−ϑ (M)(1−ϑ) σ

σ−1

1− exp−ρ+(1−ϑ)(1+z)ω
,

s.t. (M)−1 = l + z + δLE ,

δLE = zδ

(
1 +

1

ΛFπ

)(
1

ω (σ − 1)

(
1 +

1

z

)
− ΛFπ

)
,

z = lω (σ − 1) (µ− 1)
zΛFπ

1 + z
.

(6)

In the equation above, the first line represents the objective of the social planner, the second line contains
the labor market clearing constraint, and the last two lines replicate the decentralized allocation conditions
from Proposition 2.2. Informally, on the second-best balanced growth path, the social planner sets markups
subject to the BGP feasibility constraints and the constraints imposed by the profit-maximizing behavior of
firms. We hope that the motivation behind this second-best concept is relatively straightforward. Market
power is defined as a producer’s ability to control the prices of their goods. In the second-best, we take
away this ”power” from firms and reallocate it to the social planner, who then sets markups or prices at
their discretion. This notion of second-best is quite similar to the one suggested by Dixit and Stiglitz [1977]
in their analysis. We also view it as a natural extension of the welfare analysis performed by Baqaee and
Farhi [2020b] and Baqaee and Farhi [2020a] in frameworks with exogenously fixed markups.

The second-best allocation can be characterized as follows:

Proposition 2.3. The second best markup level solves

ΛY,µ = 1− 1

σ
,

µ = 1 +
1

σ − 1

(
(σ − 1)ω

zΛFπ

1 + z

(
1 +

ΛE,µ

ΛZ,µ

))−1

.

(7)

As the proposition above suggests, at the second-best allocation, the share of production labor is the
same as at first best: the social planner cannot readjust the distribution of workers between entry and
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investment, but they can still reset ΛY to its socially optimal value. Notably, the markup level that solves
the equations in Proposition 2.3 is not equal to the optimal Dixit and Stiglitz [1977] markup value, i.e., it is
generically not identical to the CES markup that firms would decide to impose in the ”true” decentralized
equilibrium. The deviation from the CES markup value depends on the ratio of shares ΛE,µ/ΛZ,µ that
determines the extent of misallocation at the second-best allocation and on the elasticity of firm profits
with respect to investment z.

2.3. Toy Model: Takeaways

In the toy model that we have outlined above, the allocation of labor between investment and entry is
independent of the markup value. Moreover, the distribution of resources in this economy is generically
sub-optimal. Thus, we have suggested a way to isolate the welfare loss due to a sub-optimal level of markups
from the misallocation generated by the discrepancy between social and private returns on investment.
Specifically, we propose using the distance to the second-best allocation as a primary measure of the welfare
costs of market power.

In a more general setting with heterogeneous firms, investment and entry cost shares depend on the
value of markups imposed by different producer types. Still, the general logic of our toy model example
does hold up. In a generic setting with free entry and endogenous productivity or capital dynamics, we
cannot move the economy to the socially optimal balanced growth path by simply eliminating producer
market power. The additional policy instruments are necessary to achieve the first best. Thus, we argue that
the second-best comparisons are more appropriate if we want to analyze the welfare effects of markups –
or any other inefficiencies.

3. General Model: Setting

In this section, we present the setting of the general theoretical model. Our framework is built in discrete
time. The structure of the economy is similar to the models featured in Atkeson and Burstein [2008], Liu et al.
[2019], Weiss [2019] and Cavenaile et al. [2020]. We assume that at each moment in time, the production
sector contains a continuum of good varieties Vt at time t. Each variety contains a discrete number of
product lines, and each good producer can own multiple products within different sectors. Similar to many
growth frameworks based on Grossman and Helpman [1991b], this setup allows us to flexibly model market
power at a firm level and preserves deterministic dynamics for all aggregate variables. Figure 2 illustrates
this setup. We describe the definitions of product, sector, and firm types in the next subsection.

Our framework features both static and dynamic factors of production. We say that a production factor
is static if firms can alter the amount of this factor instantaneously. Quantities of dynamic inputs available
to producers in period t can only be affected by their investment in period t− 1. In addition, we classify
all inputs that accumulate over time as dynamic. This definition implies that dynamic inputs act as state
variables in the short-run producer optimization, similarly to TFP. We casually refer to the static factor
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Figure 2: Economy Structure for the General Setting

of production as ”labor” and the dynamic factor – as ”capital,” although our setup admits a much broader
interpretation. We introduce dynamic inputs in our model primarily to make our theoretical setting more
consistent with the structural estimation framework and to simplify the interpretation of our counterfactual
results. The role of fixed assets in production is further discussed in Section 3.3.

Population is homogeneous, and we typically assume that the size of the labor force is equal to one in
the initial time period t = 0. Individuals supply labor to producers in a perfectly competitive labor market.
In the benchmark, we assume that the labor supply is inelastic so that each worker generates one unit of
labor input in each period. Population grows over time with a constant rate gL.

Our setting also features free entry. Similar to the toy model, entry is a dynamic decision. Each potential
entrant has an option to pay a fixed entry cost LE , enter the production sector in the next period, and draw
a firm type from a fixed distribution. The entry cost is measured in terms of labor units, and it grows over
time with a fixed rate gE . The total number of entrants is determined endogenously. Product and firm exit
in our setting are non-strategic so that there is no endogenous selection based on productivity and/or fixed
assets.

3.1. Type Spaces

To keep notation concise, we index products, varieties, and firms by their types. A ”type” is a summary of
all relevant characteristics of a firm, product, or sector that (i) cannot be altered in the current period and
(ii) acts as sufficient statistics for producers’ decisions at a firm or product level. For example, under the
definition of product types stated in this paragraph, all goods that belong to the same type have the same
equilibrium markups and the same equilibrium employment levels. Similarly, firms that belong to the same
type spend the same amount of funds on investment.

Our setting features homothetic consumer preferences and homothetic production. Thus, it is conve-
nient to define product and producer types in terms of relative productivity and relative capital, denoted by
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aγt and kγt for product γ in period t. aγt and kγt are defined in terms of absolute levels of TFP ãγt and
capital stock k̃γt, and the corresponding un-weighted economy-wide averages At and Kt

5:

aγt =
ãγt
At

, kγt =
k̃γt
Kt
,

where At = Eγ∈Γt [ãγt] , Kt = Eγ∈Γt

[
k̃γt

]
.

(8)

Throughout the rest of this paper, we casually refer to the relative capital stock of a product as ”capital
stock” and relative productivity of a good – as ”productivity” or ”TFP.”

Figure 3: Variety and Product Types

A sector type ν includes the number of product lines that belong to the sector, and a joint distribution of
product-specific capital stocks and TFP. Figure 3 depicts three distinct variety types ν1, ν2 and ν3. Variety
ν2 is different from variety ν3 because of the differences in productivity and capital of goods γ21 and γ31. A
product type γ consists of a product-specific stock of capital, product-specific TFP and a variety type index
ν. This definition implies that product types are variety-type specific: in Figure 3 γ14, γ22 and γ32 belong to
different product types despite the fact that all these products have similar productivities and capital stock
levels.

Γt is the set of all products present in the economy in period t, and Γν is the set of products within a
sector for variety ν. Γν is not indexed by the time period since the definition of variety types includes the
distribution of capital and TFP across products. The same applies to the relative product characteristics aγ
and kγ , and the product type densities within sectors fνγ .

The definition of a firm type depends on properties of the investment process and assumptions on the
dynamics of TFP and capital6. In our theoretical analysis, and thus, all our results will be formulated for a
5There are many equivalent ways to define relative producer types: for any constant-returns-to-scale function h ((sγ′t)γ′∈Γt) and
for any product characteristic s, the function sγt

/
h
(
{sγ′t}γ′∈Γt

)
would evolve similarly to sγt

/
Et [sγ′t] along any balanced

growth path of our setting. We use the unweighted expectations of product characteristics for the sake of simplicity only. All the
results that we present in the subsequent sections are invariant to the relative type specifications.

6In a range of settings, firm types can be represented as multi-sets of product types owned by each firm. For example, this is the
case when all the variety markets feature either monopoly or Bertrand competition with perfectly substitutable products, as in
the canon models of Aghion and Howitt [1992], Grossman and Helpman [1991b] or Klette and Kortum [2004]. In other settings,
firm types have to include information on the firms’ positions in the economy’s production network.
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general Banach firm type space. We will use θ ∈ Θt to index the producer types, where Θt denotes the set
of all producer types present in the economy at time t.

3.2. Consumers

[Consumer Preferences] Preferences of consumers across final good varieties are given by a CES aggre-
gator with elasticity of substitution σV :

(Yt)
1− 1

σV = |Vt|
∫
ν∈Vt

(Yνt)
1− 1

σV fνtdν. (9)

Here Yνt is the consumption index for goods that belong to variety ν, and |Vt| is the total mass of varieties
available to consumers at time t; fνt denotes the density of variety type ν among all sectors at time t.

Similarly, the sector-level consumption is a CES (σΓ) aggregate of outputs produced by individual
firms:

(Yνt)
1− 1

σΓ = |Γν |
∑
γ∈Γν

(yγt)
1− 1

σΓ fγν . (10)

fγν denotes the time-invariant density of product type γ among all products in sector of type ν. The density
fγν can be expressed as a ratio of product and sector type densities: fγν = fγt/fνt.

[Consumer Optimization Problem(s)] In the short run, the representative consumer sets the demand
for each final good by solving a standard output maximization problem, subject to their budget constraint.
The inter-temporal consumer optimization is also standard:

max
{Yt}∞t=0,{αt}∞t=0

W0 =

∞∑
t=0

e−ρt (Yt/Lt)
1−ϑ

1− ϑ
dt,

s.t.
Yt
Lt
Pt = wt + αt − exp(−rt)αt+1,∀t.

(11)

rt is the log value of the interest rate, and αt is the consumer asset holdings at time t. ϑ ≥ 1 is the inverse
of the intertemporal substitution elasticity. In addition to the budget constraint, the consumer’s problem is
also subject to a standard no-Ponzi condition.

Importantly, unlike Edmond et al. [2021] or Weiss [2019], we assume that consumers do not own capital
directly. Instead, the evolution of fixed asset stocks is determined by the dynamic producer optimization. A
key consequence of this assumption is that market power has different and possibly opposing effects on
production labor and capital in our setting. Whenever markups increase, the number of workers employed
in production should fall, as higher prices reduce the consumer demand. At the same time, higher markups
levels are likely to incentivize innovation and entry because firms are willing to invest more if they can
earn higher surpluses.

14



15

3.3. Firms: Short Term

[Production] For each product γ ∈ Γt, the production function maps productivity, labor and capital stock
to physical output:

yγt = aγAt (kγKt)
ωK (lγt)

ωL , (12)

where aγ is the relative good-specific productivity, and kγKt and lγt represent the amounts of capital and
labor used in production at time t. ωK and ωL denote the output elasticities with respect to production
factors. Also, we use ξ = ωK + ωL to denote the returns to scale parameter of the production function.

There are several reasons why we explicitly include capital in our model. First, a few studies, including
Bessen [2017], Crouzet and Eberly [2019], de Ridder et al. [2019] and Weiss [2019] have suggested that the
rise of market power in the US can be explained by an increase in the importance of intangible capital.
We want accurately evaluate the effects of the rise of intangibles on welfare and first and second-best
allocations. To do so, we need to separate R&D and SGA expenditures from the costs associated with
physical capital maintenance and accumulation. Second, by explicitly incorporating capital in our setting,
we can make our theoretical model more similar to the structural estimation framework used to evaluate
firm production functions and demand structure. Most of the existing production function estimation
methods assume that physical capital and TFP are dynamic. The estimates obtained using these methods
are inconsistent if capital is variable in the short run or functions as a part of composite TFP. Thus, this
assumption simplifies the interpretation of our counterfactual exercises. Finally, if we separate capital and
TFP at the firm level, we can adopt different assumptions for the dynamics of the aggregate stock of tangible
assets and productivity. We can allow aggregate capital to accumulate linearly, as in most macro settings.
Productivity can evolve in a log-linear fashion, as in the benchmark growth models.

[Market Power and Industry Structure] Our welfare analysis exercises focus on the first and
second-best comparisons. In both first and second best, the social planner sets the values of markups, either
directly or indirectly. This implies that the welfare implications of markups only depend on the markup
values and not on their origins. Thus, as long as we focus on the welfare analysis only, we can w.l.o.g.
consider a setting with fixed markups and marginal cost pricing, as in Baqaee and Farhi [2020b] and Baqaee
and Farhi [2020a]:

Assumption 1. [Marginal Cost Pricing] Producers take markups as given and choose employment and
output levels that satisfy the following equation:

pγtyγt =
µγ
ωL

lγtwt. (13)

ωL is the elasticity of output with respect to variable inputs (labor), and pγt is the price that corresponds to the
level of output yγt whenever consumer optimization conditions hold.

Here it is important to note that, while the welfare comparisons that we consider are invariant to
the nature of markups, results of other counterfactual exercises do depend on the reaction of markups
to production or/and demand shocks. For example, suppose we want to analyze the welfare effects of

15



16

increased capital intensity or a decline in demand elasticities. Such shocks inevitably change the magnitude
of markups. The resulting welfare elasticity will vary depending on how much the markups change, i.e.,
the pass-through rates of shocks into markups. On the other hand, it is also true that pass-through rates do
not affect the economy’s reaction to all shocks that only affect firms’ dynamic optimization. Such shocks
include changes in innovation technology, knowledge spillovers, and exogenous growth rates of population
and entry costs.

3.4. Firms: Dynamics

[Innovation and Investment] Incumbent firms control the dynamics of their state variables, including
product-specific capital, product-specific TFP, and the number of active product lines by investing in either
capital expenditures or various research projects that generate product and process innovations. Formally,
we assume that there are several investment options available to firms. The set of these projects I is finite
and time-invariant. Individual investment options are indexed by ι ∈ I . Firm-level investment in terms
of labor units is represented by a vector zθt ∈ R|I|. Throughout our analysis, we assume that capital
evolves independently from TFP and the number of active products. There exists a project ιK ∈ I such
that investments in ιK can only lead to changes in capital accumulation. Other projects can only influence
TFP and the number of goods owned by the firm.

We assume that firm types follow a first-order Markov process. The transition probabilities between
active firm types at time t are summarized by a kernel Pt : Θ× ð → [0, 1], where ð is a complete sigma-
algebra on the firm type space. The elements of the map Pt are not fixed. Rather, the type transition
probabilities depend on the state of the economy, the firm’s own investment, and the distribution of
investment across all producer types. Formally, we require that the following assumption holds:

Assumption 2. [Transition Probabilities]The transition kernel Pt of the Markov process that describes
dynamics of firm types can be specified in the following way:

Pt = P
(
zΘt exp

−gEt, fΘt, Et,Kt exp
−gEt

)
. (14)

zΘt : Θ → R|I| is the operator that maps firm types to investment levels. fΘt is the cross-sectional density of
firm types at time t, Et is the entry rate, and Kt exp

−gEt is the detrended aggregate capital stock.

We assume that the operator P is smooth in all the arguments. For simplicity, we also assume
away corner solutions in firms’ dynamic optimization, i.e., we consider the settings in which higher own
investment in productivity increases the probability of product and process innovations and decreases
the likelihood of exit. Similarly, own investment in the capital stock should increase the likelihood of
obtaining larger capital stock in future periods. These conditions can be formalized in terms of the first-order
stochastic dominance of the marginal distributions of product capital stock and productivity. Finally, to
ensure the existence of balanced growth paths, we assume that the probability of transition to the ”exit”
state is non-zero for all firm types. Later on, we will also impose additional ”concavity” restrictions on P to
ensure the existence of a well-behaved equilibrium.
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To clarify the meaning of Equation 14, let us note that for any setting with Markov dynamics transition
probabilities between firm states can be expressed as functions of the control variables zΘt, the state of the
system, summarized by a set of time-dependent objects {fΘt,At,Kt,Mt, Lt}, and all model parameters.
Thus, the specification above restricts the set of arguments of the probability transition kernel quite
significantly. In this section, we provide a brief explanation for why each of the objects listed on the
right-hand side of Equation 14 influences the evolution of producer state variables. We also argue that
this specification is consistent with the assumptions imposed on productivity dynamics in many existing
economic growth frameworks.

Equation 14 suggests that four factors influence firm type transitions. The first argument, zΘt, captures
three channels: first, own firm investment has a direct positive effect on either firm’s productivity, capital
stock, or/and a set of products lines available to the firm; second, investment done by other producers
might affect firm’s state due to either business-stealing or non-pecuniary externalities, depending on the
model; finally, zΘt also determines the amplitude of pecuniary externalities generated by the investment.
Similarly, the remaining arguments of the function P affect the transition probabilities via pecuniary and
non-pecuniary externalities. The impact of pecuniary externalities in our setting is proportional to changes
in the endogenous growth rates gAt and gKt. Thus, the magnitude of the pecuniary externality effects
depends on all of the arguments of the operator P . The same goes for the non-pecuniary externalities. E.g.,
frequencies of firm types are likely to affect the probability of ”business stealing” by incumbent firms and
expansions of incumbent firms into new markets. The entry rate Et+1 induces non-pecuniary externality
effects on incumbents’ states whenever the new firms are allowed to displace the incumbents upon entry
or whenever the entrants gain access to the incumbent’s sectors. The aggregate capital stock is included in
the set of arguments of P because we want to allow for the additive capital accumulation process, as in
most macro settings.

The specification of the innovation process stated above is rather abstract, so it is important to clarify
which frameworks are covered by it. In classical settings of Aghion and Howitt [1992], and Grossman
and Helpman [1991b], the frequency of product innovations depends only on firms’ investment, and the
probability of exit depends on the distribution of investment intensities across all firms in the industry,
as well as the entry rates. The same holds for the Klette and Kortum [2004] model that allows firms to
own multiple goods and thus features a multidimensional firm type space: in Klette and Kortum [2004],
transitions between firm types are determined by the entry rate and distributions of the investment. The
models with externalities, e.g., Akcigit et al. [2021] or Akcigit and Ates [2019], also are particular cases
of our setting. The non-pecuniary externalities alter the shape of the P function, but not the set of its
arguments.

[Entry] Firms that enter at time t have to hire LEt = LE expgEt workers to set up the production
process. This cost covers expenditures on the initial stock of fixed assets, as well as the productivity draw.
PEt : ð → [0, 1] denotes the distribution of firm types for entrants. PEt is specified as follows:

Assumption 3. [Entrant Type Distribution] The distribution of entrant types is given by a value of a
function PE :

PEt = PE

(
zΘt exp

−gEt, fΘt, Et,Kt exp
−gEt

)
. (15)
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PE is smooth in all its arguments, and it also satisfies the following identities, for all possible values of its
arguments:

EPEt
[ãγt] = ĀEAt, EPEt

[k̃γt] = K̄E expgEt . (16)

Function PE has the same set of arguments as P , and the motivation behind it is similar. In addition,
we assume that the absolute levels of entrants’ productivities are proportional to the aggregate productivity
at the time of entry, At, and that the detrended stocks of fixed assets for new firms are drawn from a fixed
distribution. Although it might seem non-standard, this assumption is necessary for the existence of a
balanced growth path with non-zero productivity growth. In different shapes or forms, it is present in
many frameworks with endogenous growth. E.g., Sampson [2016] explicitly assumes that the entrants draw
productivities from the existing TFP distribution. In the frameworks based on Aghion and Howitt [1992]
creative destruction model, the entrants have to develop a good variety that supersedes the product of their
closest competitor. This means that similarly to Sampson [2016], entrants’ TFP levels grow proportionately
to the aggregate TFP. Note also that under the assumptions imposed in this section there are no multiple
equilibria in the entry stage.

[Producers’ Dynamic Optimization] Potential entrants have to decide whether to abstain or to pay
the cost LE expgEt and get the type draw from distribution PEt. The free entry condition thus implies:

wtLE expgEt = PEtVΘt. (17)

The incumbents’ dynamic optimization problem is as follows

Vθt = max
zθt

{
Sθt − zθtw + exp−rt PtVΘt+1

}
,

s.t. Sθt =
∑
γ∈Γθ

Sγt =
∑
γ∈Γθ

pγtyγt − wtlγt
(18)

Here Sγt denotes the variable surplus generated by the sales of product γ, and Sθt stands for the total
variable surplus earned by firm θ. Variable surplus is a short-run objective, and the maximization of
surpluses determines product-level employment, output, and markups. Profits, defined as the difference
between variable surplus and investment costs πθt = Sθt − zθtw, act as a long-run objective. Thus profit
levels determine investment levels and entry decisions. We assume that the liquidation value is equal to
zero.

4. General Model: Balanced Growth Paths

This section describes the balanced growth path conditions for the decentralized equilibrium and the social
optimum. The definition of BGP equilibria is as follows:

Definition 1. [Balanced Growth Paths] A balanced growth path is formed by pair of positive allocation
functions lΓ : Γ → R+ and zΘ : Θ → R|I|

+ . Function lΓ specifies de-trended production employment for all
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the products in the economy, and zΘ describes de-trended investment levels for all firm types and all investment
types.

The definition above implies that in period t, production employment is equal to lΓ expgEt, and the
investment levels are equal to zΘ expgEt. The cross-sectional distributions of sales shares, cost shares,
markups, relative productivities, and relative capital stocks are time-invariant along the BGP, and all
aggregate variables grow at constant rates. We normalize average variety-level sales in the economy to 1 in
every period.

[Notation] In all subsequent sections, objects with subscripts Θ, V and Γ denote functions that map a
respective type space to real numbers. As an example, lΓ : Γ → R+ assigns employment levels to all product
types. Bold symbols with subscripts Θ, V and Γ denote linear diagonal operators that map a respective
type space to itself. Elements of such diagonal operators are equal to the elements of the corresponding
function, e.g., the elements of lΓ are equal to the values of lΓ. EW [X] denotes a W -weighted expectation
of X , so that EW [X] =W ′X/ (W ′

1).

4.1. Growth Rate Identities

In this paragraph, we derive growth rates for all aggregate and firm-level variables —- the expressions for
the growth rates listed below hold for the decentralized equilibrium, first and second best. Formally,

Proposition 4.1. [Aggregate Growth Rates]On any balanced growth path, the growth rates of the aggregate,
firm- and product-level variables are equal to the values stated in Table 1.

We start by characterizing the growth rates of real variables. First, since we want the shares of
production, investment, and entry employment to remain constant, the population growth rate should be
equal to the sum of growth rates of the mass of producers M and the average per-firm employment in each
of the categories. Thus, we infer that the growth rate of the mass of firms should be equal to the difference
gL − gE . This also implies that firm-level investment and production labor grow at the same rate as the
entry costs. A setting with gE = gL generates a constant mass of firms and a constant mass of products, as
in the creative destruction models, e.g., Klette and Kortum [2004]. Under gE = 0, per-firm employment and
investment is constant, as in Judd [1985] or Romer [1990] models. The masses of varieties and products
grow at the same rate as the mass of producers. The same applies to the mass of entering firms.

The growth rate of average product-level capital stock is determined the law of motion for capital.
Whenever the expected value of fixed assets is linear in past real investment, the growth rate of product-level
capital is equal to gE7. Employment at a firm level also grows at a rate gE .

In our setting, the aggregate output growth originates from two sources: expansion of the set of
varieties produced in the economy and evolution of the output levels within products. The growth rate of
product-level output is equal to gA + ξgE , where gA is the aggregate productivity growth. Thus, we have
7Here, we are implicitly assuming that productivity in the capital goods sector does not grow.
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Table 1: Equilibrium Growth Rates

Variable Growth Rate Value

1. Real Variables

Mass of Producers, Mt gL − gE

Mass of Final Good Varieties, Vt gL − gE

Mass of Products, Γt gL − gE

Product-Level Inputs, lγt and kγtKt gE

Product-Level Output, yγt gA + ξgE

Aggregate Output, Yt gA + ξgE + σV
σV−1 (gL − gE)

2. Prices

Wages, wt −gE
Firm-Level Prices, pt −gA − ξgE

CPI, Pt −gA − ξgE − 1
σV−1

(
gL − gE

)
Notes: In the expressions listed in this table, ξ is the returns-to-scale parameter of firms’ production function.

the following identity for the dynamics of the aggregate output:

gY = gA + ξgE︸ ︷︷ ︸
Within-Product Output Growth

+
σV

σV − 1
(gL − gE)︸ ︷︷ ︸

Love-of-Variety Effects

. (19)

The amplitude of the love-of-variety effects is determined by the inter-sectoral substitution elasticity. The
scale of within-firm output growth depends on the returns-to-scale parameter ξ, and the endogenous growth
rate of productivity gA. Parameters σV and ξ thus measure direct effects of changes in the exogenous
growth rates gL and gE on the output growth, conditional on the value of gA. Whenever the population
rate declines by %1, the contribution of love-of-variety effects to the aggregate growth declines by σV

σV−1 %.
The effect of changes in the entry cost growth depends on the magnitude of the economies to scale relative
to the love-of-variety effects. Whenever returns to scale are large enough, increases in the growth rate of
entry costs positively affect output growth, conditional on the growth rate of productivity. If gE increases,
labor is reallocated from the entrants towards incumbents, and this allows the economy to grow faster.

Now let us describe the dynamics of prices along the balanced growth path. Given the price normal-
ization that we use, the aggregate nominal output is always equal to the mass of varieties Vt. The price
normalization also allows us to pin down the growth rate of wages and product-level prices. Since firm-level
sales and markups are constant, the growth of product-level prices is equal to the negative product-level
output growth rate. Similarly, the growth rate of wages is equal to the negative growth rate of per-product
employment. The CPI growth rate is equal to the difference between the growth rate of product mass
growth rate and the growth rate of aggregate output.

Using the values of aggregate growth rates, we can also derive the expression for the equilibrium
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interest rate:
r = ρ+ (ϑ− 1) (gY − gL)− gE ,

r = ρ+ (ϑ− 1)

(
gA + ξgE − gL +

σV
σV − 1

(gL − gE)

)
− gE .

(20)

If consumer preferences exhibit the ”love-of-variety” property, the interest rate is also increasing in the
population growth rate, conditional on gA. The sign of the partial derivative of r with respect to gE depends
on the relative magnitudes of parameters ξ and σV , consistently with the discussion above.

4.2. Type Distributions along the BGP

In this section, we describe the cross-sectional type distributions that are generated by the balanced growth
path allocations. To characterize the type densities, we first define the Neumann series operator for firm
masses: let P denote the probability transition operator along some BGP,

ΨΘ =

∞∑
n=0

exp−gMn P ′
EPn = P ′

E

(
I − exp−gM P

)−1
,

where Pn
(
θ, θ′

)
=

∫ ∫
...

∫
P
(
θ, θ̂1

)
P
(
θ̂1, θ̂2

)
...P

(
θ̂n−1, θ

′
)

dθ̂1θ̂2...dθ̂n−1.

(21)

Operator ΨΘ tracks the masses of firm types that are present in the economy that follows a balanced
growth path. Suppose 1S : S → R denotes the function that assigns a unit value to all elements of some
space S . Then, the number of producers that enter the economy in period t − n and survive until t is
proportional to exp−ngM P ′

EPn
1Θ: the term exp−ngM represents the difference in the number of new

firms between periods t and t − n, and the term Pn
1Θ captures type-dependent survival probabilities

between t and t− n. The operator ΨΘ is a sum of terms exp−ngM P ′
EPn

1Θ for all past periods, and thus it
contains information about all firms that survive until period 0.

We can then characterize the BGP entry rate E , and distributions of producer and product types as
follows:

E =
(
ΨΘ

1Θ

)−1
,

fΘ =EΨΘ,

V
M

=E
(
ΨΘΞΘ,V1V

)
= E

(
ΨV

1V
)
,

Γ

M
=E
(
ΨΘΞΘ,Γ1Γ

)
= E

(
ΨΓ

1Γ

)
.

(22)

In these identities, ΞΘ,V and ΞΘ,Γ are time-invariant linear operators that map firm types to sector types
and product types, respectively. The elements of operator ΞΘ,V are equal to numbers of sectors of type ν
in which firm θ is present, divided by the total number of products in the corresponding variety market.
Similarly, the elements of ΞΘ,VΓ are equal to the numbers of products of type γ owned by firm θ.

We also can derive the BGP expressions for the product and variety type densities, denoted by fΓ and
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fV respectively, and the product entry rate EΓ. The entry rate at the product level is equal to the ratio of
products owned by the entrants to the total product mass:

EΓ =
(
ΨΓ

1Γ

)−1
,

fV =
(
ΨV

1V
)−1

ΨV , fΓ = EΓΨΓ.
(23)

Finally, PΓ
E = PEΞΘ,Γ denotes the product distribution for entering firms.

[Type Transitions and Entry along the decentralized BGP] Recall that in Section 3.4 we have
assumed that firm type transitions and the entry distribution depend on four factors: the relative type
distribution, entry rate, de-trended investment, and de-trended aggregate capital stock. We can reduce the
set of arguments of P and PE even further for the economy that moves along a balanced growth path.
In particular, note that the firm type transitions and the entry rates have to satisfy equation 22. In the
next paragraph, we also show that the economy’s capital intensity on the BGP is only a function of type
densities, entry rate, and investment. Thus, it is w.l.o.g. to assume that the BGP transition kernel and the
BGP entry type distribution only depend on the investment levels and the exogenously fixed growth rates
gL and gE :

P =P BGP (zΘ, gE , gL) ,

PEt =P
BGP
E (zΘ, gE , gL) .

(24)

4.3. Capital Intensity and TFP Growth on the BGP

Since on the balanced growth path capital has to grow at a rate gE , we can characterize the BGP value of K
as follows:

expgE = EΓK̄E/K + expgE (1− EΓ)EΨΓ−PΓ
E
[kγ ] . (25)

The term EΓK̄E/K captures the contribution of entrants to the aggregate capital stock. The second term on
the right-hand side of Equation 25 is the expression for the average capital stock of surviving incumbents,
times the incumbent share in the total product mass.

Operators P and PE describe the relative firm type transitions and assignments. These functions don’t
contain any information about the magnitude of changes in the absolute productivity levels across firms.
We need to introduce an additional operator that tracks expected product-level absolute TFP improvements
over time8. Let this operator be denoted by P∆A : Γ → R. The productivity growth gA solves the following
equation:

1 = EΓĀE + exp−gA (1− EΓ)EΨΓ

[
aΓP∆A] . (26)

This equation is in many aspects similar to the statistical decompositions of the productivity growth that
have been developed in the literature9, except for the fact that here we prefer to use population frequencies
as weights instead of sales or cost shares. The first term on the right-hand side is entrants’ contribution
to aggregate productivity, and the second term is incumbents’ contribution. Since we assume that the
8Here we assume that the productivity of products that exit the market is normalized to 0.
9E.g., see Baily et al. [1992], Griliches and Regev [1995], Olley and Pakes [1996], Foster et al. [2008], or Melitz and Polanec [2015].
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economy moves along the BGP, the terms associated with changes in the sales or, more generally, weight
distribution over time are equal to zero: only within-product productivity improvements contribute to
aggregate TFP growth.

4.4. Decentralized Equilibrium

[Firm-level Optimization: Short Run] Consistently with Assumption 1, markups and product level
employment are determined by the following condition:

pγyγ
ωL

µγ
= wlγ . (27)

ωL is the elasticity of output with respect to labor lγ , and µγ is the marginal markup of product γ. The
variable surplus earned by product γ is equal to

Sγ =

(
µγ
ωL

− 1

)
wlγ (28)

In the expression above, the ratio µγ/ωL is equal to the average markup of good γ. As it turns out, average
markups act as an essential statistic in the description of the second-best allocation and most of our
comparative statics results. Thus, we introduce an additional bit of notation: in the rest of the paper, the
average markups are denoted by ζγ .

[Firm-level Optimization: Long Term] The equilibrium investment levels satisfy the following
condition:

∀ι ∈ I : wzΘ (ι) = exp−r ΩZOwn
P (ι)VΘ, (29)

where ΩOwn
P (ι) is the operator that contains the derivatives of transition probabilities with respect to the

log of firms’ own investment of type ι. ΩOwn
P denotes the sum of operators ΩOwn

P (ι) for all investment types
ι ∈ I . To ensure the (local) uniqueness of decentralized equilibrium, we need to impose an additional
assumption on the transition probability matrix:

Assumption 4. [”Concavity” of Transition Probabilities] For all feasible investment levels and entry
rates, the elements of the operator P −ΩOwn

P are positive, and the norm of the operator P −ΩOwn
P is below one.

This restriction is analogous to the assumption on the convexity of investment costs typically imposed
in other settings since, informally, it implies that the derivatives of transition probabilities are small enough
in absolute value. Note that here by ”own” investment, we mean the investment of a specific firm instead of
the average investment within a corresponding firm type.

If the concavity restriction holds, we can express producer values and investment on the decentralized
BGP in the following way:

VΘ =
(
Id − exp−r

(
PΘ − ΩZOwn

P
))−1

SΘ,

wzΘ (ι) = ΩZOwn
P (ι)

(
expr Id − P +ΩZOwn

P
)−1

SΘ.
(30)
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To keep the notation concise, we abbreviate the expression for investment as

wzΘ (ι) = ΨZOwn (ι)SΘ. (31)

The equations above relate dynamic firm choices to their short-term surplus levels SΘ. The elasticities
of firm’s investment with respect to producers’ short term surpluses are summarized by the operator
ΨZOwn (ι) = ΩZOwn

P (ι)
(
expr Id − P +ΩZOwn

P
)−1.

We can also show that the producer value functions and investment levels satisfy several intuitive
properties using these equations. E.g., conditional on the values of transition probabilities and surpluses,
both value function and investment levels decline in the value of interest rates. Similarly, investment and
values also increase whenever the exit probabilities decrease, i.e., when the elements of P increase uniformly.
Finally, an increase in the short-term surpluses leads to an upward shift in the firm value function, and as a
result, investment levels should increase.

We can also rewrite the free entry condition in terms of the short-term surplus levels:

wLE = expr PE

(
expr Id − P +ΩZOwn

P
)−1

SΘ,

wLE = ΨESΘ.
(32)

Thus, the value of entry has the same properties as the value function for incumbents: higher short-term
surpluses, lower exit probabilities, and lower interest rates generate more entry, ceteris paribus.

The equations stated in this section lead to the following characterization of the decentralized equilib-
rium:

Proposition 4.2. [Decentralized Allocation] The labor allocation functions that generate the decentralized
balanced growth path solve the following system of equations:

ζγlγwγ = pγyγ ,

zΘ (ι) = ΨZOwn (ι)
SΘ
w
,

LE = ΨE SΘ
w
.

(33)

The operators ΨE and ΨZOwn (ι) only depend on the investment functions and the exogenous growth rates gE
and gL. At least one solution to this system of equations always exists. In addition, when the law of motion for
capital stocks has a standard linear additive form, the existing balanced growth path equilibria will always
feature strictly positive and finite aggregate capital stock value Kt.

The existence of the BGP(s) follows from Schauder fixed point theorem since the set of possible
allocation functions is compact, convex, and non-empty, and since we have assumed continuity for all the
operators that are used to construct the equations in Proposition 4.2.

A formal definition for the ”linear additive” law of motion for capital stocks is as follows. We assume
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that the production technology for capital goods is linear in labor so that the amount of capital goods
produced with zKθt units of labor is equal to AK

t z
K
θt , where AK

t is some constant. At the product level, the
law of motion for the capital state is as follows. For product γ of incumbent firm θ, conditional on the
survival of the product, we have

k̃γ(t+1) = k̃γt (1− dγt) + zKθγt, (34)

where dγt is a realization of random depreciation rate dK with support [0, 1). We introduce stochastic
depreciation rates primarily to ensure that the transition probabilities are continuous in future types. For
the entrants, the relative capital stock is simply a draw from a fixed distribution that is given by a marginal
of PE . Note that the equation above explicitly states that capital investment is separate across products –
this assumption is still in line with our setup.

4.5. Socially Optimal Balanced Growth Path

4.5.1. First Best

In the first best equilibrium, the social planner chooses labor allocation functions by maximizing the
balanced growth path welfare:

max
{lγ}γ∈Γ,{zθ}θ∈Θ

(
1− exp−δ+(1−ϑ)(gY −gL)

)−1 (Y/L)1−ϑ

1− ϑ
,

s.t. ME =

(
LE +ΨΓlΓ +

∑
ι∈I

ΨΘzΘ (ι)

)−1

.

(35)

To keep the definition of the first best concise, we have omitted all the technology constraints and the
constraints that ensure that the economy is on the balanced growth path from the equation above. Note
that here we have renormalized the aggregate productivity and the size of the labor force in the initial
period to 1.

The first-best allocation is characterized by the following proposition:

Proposition 4.3. [First Best]The allocations of production labor and investment that implement first best
solve the following system of equations:

FOClγ : λγωL = ΛY λlγ
σV

σV − 1
,

FOCzθ : ΛZλZθ d log zθ + ΛZEλZ
Θ

[
d logΨΘ

]
+ ΛY Eλl

Γ

[
d logΨΓ

]
=(

1− 1

σV

)(
ΛF dgA + ωKd logK

)
+ EλV

[
d logΨV] ,

(36)

where λZθ is the share of investment type zθ in all investment, and, similarly, λlγ is the share of labor employed
in production of good γ in all production labor. λν and λγ are the sales shares of sector ν and product γ
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in aggregate output, respectively. ΛZ and ΛY denote the aggregate shares of investment and production
employment. ΛF is the weight on future periods in social planner’s objective, as in the toy model:

ΛF =
exp−δ+(1−ϑ)(gY −gL)

1− exp−δ+(1−ϑ)(gY −gL)
. (37)

For simplicity, in all subsequent derivations, we will assume that the social planners’ problem features
an interior solution, so that on the first-best balanced growth path, the function zΘ : ΘI → R is strictly
positive. This assumption holds for our model calibration. Here we also abuse the notation a little and let
zθ denote the investment of firm θ in some project, i.e., zθ is some element of the allocation function zΘ
that is defined on ΘI . λZΘ : ΘI → R+ denotes the function that contains the cost shares for all investment
types and all firm types.

The first-order conditions of the social planner’s optimization reveal several essential features of the
first-best allocation. First, along the first-best BGP, the distribution of production labor is determined by
the following equation:

FOClγ : λγωL = ΛY λlγ
σV

σV − 1
. (38)

The condition above suggests that, along the decentralized balanced growth path, markups could lead to
misallocation of production labor due to two reasons, as in Edmond et al. [2021]. First, markup heterogeneity
across producers and goods generates discrepancies between relative employment levels at first-best
allocation and decentralized equilibrium. Indeed, the markups that implement first-best equilibrium are
always homogeneous across products. Second, unlike the static models without entry, the allocative
efficiency of the economy that we consider depends on the level of markups. Even if markup dispersion is
zero, the employment levels do not match with the social optimum unless markups satisfy the following
optimality condition

µγ (1− π) =
σV

σV − 1
, (39)

where µγ is the homogeneous producer markup, and π is the aggregate profit rate, defined as π =

1− Lw/PY . Thus, the FOC for production labor implies that the markup that implements the first-best
allocation is equal to the love-of-variety elasticity σV

σV−1 multiplied by the factor 1/(1−π). This condition is
noticeably similar to the Dixit and Stiglitz [1977] result and other CES-based optimality conditions that have
been derived in the literature. Just like in Dixit and Stiglitz [1977], the social planner in our setting faces a
tradeoff between encouraging entry and increasing firm-level output, and the amplitude of love-of-variety
effects regulates this tradeoff. The profit rate multiplier 1/(1− π) readjusts the Dixit and Stiglitz [1977]
result in the presence of investment and firm type dynamics in our framework. In the endogenous growth
settings with stochastic TFP dynamics, the profit rate is proportional to firms’ net producer surplus. The
profit rate is weakly positive, and it is strictly above zero if the type distribution among incumbents does
not coincide with the entrant type distribution. Thus, in a sense, the aggregate profit rate is zero only
if incumbents’ investment is beneficial for society, i.e., if it leads to ”better” firm type distribution. The
equation above suggests that the first-best markups should be higher whenever the profit rate is high.
Unless the profit rate in the economy is equal to zero, the value of first-best markup is higher than in the
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static Dixit and Stiglitz [1977] benchmark.

Reiterating Proposition 4.3, investment levels at the social optimum are determined by the following
first-order condition:

FOCzθ : ΛZλZθ d log zθ =
(
1− 1

σV

)
ΛF dgA︸ ︷︷ ︸

Direct Growth Rate Effect

+

(
1− 1

σV

)
ωKd logK︸ ︷︷ ︸

Capital Accumulation Effect

+ EΨV
[
d logΨV]︸ ︷︷ ︸

Love-of-Variety Effect

+Eλν

[
d logΨV]− EΨV

[
d logΨV]︸ ︷︷ ︸

Sectoral Reallocation Effect

+

−
(
ΛZEλZ

Θ

[
d logΨΘ

]
+ ΛY Eλl

Γ

[
d logΨΓ

])︸ ︷︷ ︸
Labor Reallocation Effects

.

(40)

The social value of the investment, summarized by the right-hand side of Equation 40, will be important
in deriving the first and second-order welfare decompositions. We use ΨZ

Θ (zΘ, lΓ) to denote the function
that evaluates the elasticity of welfare with respect to investment, given the allocation of production and
investment labor:

FOCzθ : λZθ = ΨZ
(
zFB
Θ , lFB

Γ

)
. (41)

Equation 40 demonstrates that investment affects the allocation via four key channels. First, higher
investment values lead to faster productivity growth, and, in case of capital investment, higher aggregate
capital stock. This direct effect of investment on consumer welfare is summarized by the first two terms in
Equation 40. Second, investment affects entry and product innovation, and thus it influences the number
of final good varieties available to consumers at each moment in time. These love-of-variety effects are
summarized by the 3rd term in Equation 40. Finally, steady state investment also affects the densities of
variety, product and firm types, and thus, changes in investment lead to reallocation of production across
sectors, and reallocation of labor – across firm and product types. These reallocation effects are summarized
by the last two terms in the equation above. So, the sectoral reallocation effect suggests that investment
is beneficial for society if it leads to an increase in the number of high-output sectors relatively to the
number of low-output sectors. At the same time, investment is costly for society if it increases the density
of product types that hire a lot of workers either in production or in investment, because this means that
the social planner would not be able to allocate as much labor to entry sector. This channel is summarized
by the labor reallocation effects.

It is important to note that, due to the nature of the social planner’s problem, Equation 40 ultimately
describes the tradeoff between investment and entry that is in many ways similar to the tradeoff between
production employment and entry illustrated by Equation 39. So, in the limit case when σV → 1, the
terms that measure the productivity growth and capital accumulation effects are close to zero, as well as
the sectoral reallocation effect. Investment is only beneficial if it generates new sectors, and the costs of
investment are proportional to the labor reallocation effects – and the direct cost of investment.
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[First-Best: Implementation] To introduce the second-best equilibria, it is useful to reformulate the
first best planner’s problem in the following way. Suppose that, instead of directly selecting the production
and investment labor distributions, the social planner chooses the values of policy variables that affect
{lγ}γ∈Γ and {zθ}θ∈Θ. Assuming that the policies available to the social planner are sufficiently effective,
they can implement the first-best allocation by resetting the policy variables to their ”optimal” values. To
make this discussion more formal, let us consider an economy with marginal cost pricing. Also, suppose
the social planner can influence the allocation of production labor by altering the fixed product markups.
In addition, they can also use investment subsidies (denoted by β) to change the allocation of investment
labor. Then, the firm optimization condition satisfies

βΘλ
Z
θ = ΨZOwnSΘ

w
. (42)

We can then show that the first-best allocation can be implemented by optimal markup levels and optimal
investment subsidies. The values of the optimal policy variables are pinned down by the first-order
conditions of both the decentralized equilibrium and the social planner’s optimization. The discussion
above shows that the optimal markup values are homogeneous across producers, and the first-best optimal
markup level satisfies:

µFB
Γ =

σV
σV − 1

1

1− πFB
, (43)

where πFB is the aggregate profit rate evaluated at the first-best allocation.

Similarly, the expression for the optimal investment subsidies is pinned down by the FOCs of the firm
and social planner’s optimization problems:

βFB
Θ = ΨZOwn,FB SFB

Θ

λZ,FB
θ wFB

. (44)

Here the superscriptsFB again indicate that the respective variables are evaluated at the first-best allocation.

There exist multiple combinations of policies that can implement the first best. As an alternative to
directly setting markups, we could allow the social planner to impose output or sales taxes on final goods.
Similarly, in the setting with the generalized oligopolistic competition, the social planner might be able
to influence the industry structure by changing the anti-trust regulations in the production sector. In
turn, we can substitute investment subsidies with lump-sum transfers at the firm type level or profit taxes.
In general, to reach the first-best allocation, the social planner needs to freely readjust the incentives of
producers to hire the production workers in the short run and their motivation to invest – in the long run.
This means that the social planner requires two policy tools that can alter (i) the marginal revenues or
marginal costs at the product level and (i) the marginal returns to investment. Here it is helpful to compare
the analysis and discussion above to the Edmond et al. [2021] result that shows that the first-best allocation
in their setting can be implemented with a single output subsidy. The reason why in this case, the social
planner can achieve socially-optimal allocation by using a single policy is that Edmond et al. [2021] allow
for arbitrary non-linear subsidy schedules. This means that the policymaker can simultaneously change the
marginal and total revenues of each product. Moreover, the changes in producers’ marginal incentives can
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be independent of changes in their surplus levels. In other words, the non-linear subsidy functions like a
combination of a linear output tax/subsidy and a lump sum transfer.

4.5.2. Second Best

As suggested in the previous section, the economy that we consider features two types of frictions that
affect production and investment labor allocation. Policy variables µ and β that regulate markup levels
and investment subsidies, respectively, can influence the magnitude of these frictions. Under the first best
solution concept, both policy variables are set at the optimal levels, and thus, social welfare reaches its
global maximum. Here we define the second best balanced growth path as an equilibrium in which the
social planner sets only one of the policies (markups). In contrast, the other wedge (investment subsidies)
remains at the level prescribed by the decentralized equilibrium. It is important to note that the second-best
allocation is to some extent invariant to the choice policy tools that the social planner uses. As long as the
values of markups match the second best, the resulting allocation does not change. The same applies to
the average markups, provided that producer marginal costs always increase in the level of output. Thus,
we can w.l.o.g. focus on a more manageable problem in which the economy operates under marginal cost
pricing, and the social planner sets the values of average markups.

The social planner’s second-best optimization problem as follows:

max
ζΓ

(
1− exp−ρ+(1−ϑ)(gY −gL)

)−1 (Y/L)1−ϑ

1− ϑ
,

s.t. zΘ = ΨZOwnSΘ
w
,

yγpγ = ζγlγw,

LE = ΨE SΘ
w
,

(ME)
−1 = LE +ΨΓlΓ +

∑
ι∈I

ΨΘzΘ (ι) .

(45)

The first-order conditions derived from this problem are in many ways similar to the comparative statics
with respect to markup levels around the decentralized equilibrium:

Proposition 4.4. [Second Best]The second-best markup levels solve the following system of equations:

FOCµΓ : ΛY Eλl
Γ

[(
λγ
λlγ
ωL − ΛY σV

σV − 1

)
d log lγ

]
+

+ ΛZEλZ
Θ

[(
1−

(
λZΘ
)−1

ΨZ
θ

)
d log zθ

]
= 0.

(46)

The equation above describes the optimality condition in terms of the elasticities of labor and investment
allocations. The first term is equal to the cost-share weighted average of deviations from the optimal
production labor allocation. Because of the nature of the optimality condition for production labor, we can
interpret this term as a measure of the deviation of markups from their first-best level. Similarly, the second
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term measures the deviation of investment levels from their socially optimal values. In the equation above,
the operator ΨZ

θ should be evaluated at the second-best values of lΓ and zΘ.

Equation 46 conveys several important messages about the second-best allocation. First, unlike the
first-best level of markups, the second-best markups are heterogeneous across products and firms. The
differences between the first-best markup levels and their second-best values depend on the (i) deviation
of investment from the social optimum, (ii) elasticity of investment and production labor allocation with
respect to markups. Intuitively, in the second-best, the social planner is forced to use a limited set of policies
to compensate for the misallocation of both production labor and investment. Also, since we would expect
σV to be above one, and since the profit rate is always above zero for the endogenous growth frameworks,
we would expect the second-best markup values to be above one.

We can characterize the elasticities d log lγ and d log zθ as follows:

Proposition 4.5. [Propagation Equations: Second Best] At the second best optimum, the allocation
function differentials d log lγ and d log zθ solve the system of differential equations described below, for all
possible values of d log ζθ . Let ΣΨE

ΓSΓ
denote the operator that computes the deviation of the function value

from its ΨE
ΓSΓ-weighted average, then

(
IdΓ − ωLΣΨE

ΓSΓ
ΦY
)
d log lγ = −1ΓEΨE

ΓSΘ

[
d logΨE

d log zΘ

]
d log zΘ+

−
(
ζγ − ΣΨE

ΓSΓ

) (
ζγ − Id

)−1 d log ζγ ,

(IdΘI − ΦZZ) d log zΘ =EΨZOwn
Γ SΓ

[
ζγ

ζγ − 1
d log ζγ

]
+ EΨZOwn

Γ SΓ
[d log lγ ] .

(47)

In these equations, ΦY is the Hessian operator for the aggregate output with respect to the product outputs
yΓ, ΨE

Γ and ΨZOwn
Γ are the maps of operators ΨE and ΨZOwn on the product space, and the operator ΦZZ is

defined as follows:

ΦZZ = EΨZOwnSΘ

[
d logΨZOwn

d log zΘ

]
. (48)

Here it is useful to clarify the definition of the operator ΣΨE
ΓSΓ

. Formally, we have:

ΣΨE
ΓSΓ

= IdΓ −
(
ΨE

ΓSΓ
)−1

1ΓΨ
E
ΓSΓ. (49)

The system of equations above has a well-defined solution if the norms of the operators ωLΣΨE
ΓSΓ

ΦY

and ΦZZ are contraction mappings, or in other words, if the norms of these operators are below one. The
norm of ωLΦ

Y is below one, since the elements of this operator are proportional to the elements of the
aggregate output Hessian:

ωL

[
ΦY
]
γγ′ = ωL

∂ log Y

∂ log yγ∂ log yγ′
. (50)

For the norm of ΦZZ to be below one, it has to be the case that firm investments are, in a sense, sufficiently
substitutable, i.e., for each θ ∈ Θ and each ι ∈ I zθ (ι) does not respond strongly to changes in other
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investment rates.

The equations above demonstrate how markup shocks alter the labor allocation. We start our discussion
with an interpretation of the production labor equation. First, Equation 47 suggests that the direct effect of
an increase in average markups is negative: an increase in the price-cost margins drives the employment
down. In addition, an increase in markups triggers an increase in surplus levels, leading to an upward
shift in wages. The increase in labor costs further reduces product-level employment. In the equations
above, the effects of changes in production labor allocation on wages are described by the expectation term
ωLEΨE

ΓSΓ

[
ΦY d log lγ

]
. Notably, in settings without entry, the wage movements tend to offset the direct

effects of markup shocks, not amplify them. Substitution effects between final goods, summarized by the
operator ωLΦ

Y also lead to an amplification of markup shocks because the decline in the sales of product
γ leads to an increase in other goods’ outputs. Finally, the operator 1ΓEΨE

ΓSΘ

[
d logΨE

d log zΘ

]
in Equation 47

describes the feedback loop between changes in investment and changes in production employment under
the markup shocks. This term represents the effect of changes in investment d log zΘ on wages. The sign of
this term is ambiguous since higher levels of incumbents’ investment could both increase and decrease
the expected value of a firm for entrants, conditional on surplus levels. The direction of the feedback
effect between d log zΘ and d log lΓ is ambiguous since the impact of investment wages is essentially a
”composition” effect.

In contrast to production employment, the direct effect of markup shocks on investment is positive
since an increase in surpluses induces producers to spend more to avoid the exit shocks and retain their
position in the product markets. In addition to the direct effect of markup changes, the investment values
also depend on the reaction of production labor to the shock: whenever production employment increases,
producer surpluses increase, and so do the investment rates. The differentials d log lγ likely offset the
direct effect of markup changes in the investment equation because the effect of markup shocks on labor is
negative, and the feedback between investment and labor (in the labor equation) is not likely to be large in
magnitude.

[Fundamentals for Comparative Statics] Equation 47 allows us to understand what fundamentals
determine the second-best level of markups, average or marginal. The list of the primitives that define the
”optimal” markup distribution includes

(i) the statistics that typically affect shock propagation in the static settings, including the Hessian of
the aggregate output and production function elasticity with respect to variable inputs; the elements
of the aggregate output Hessian determine the quasi-demand elasticity at a product-type level, and
the substitution elasticities, which are used as sufficient statistics in Baqaee and Farhi [2020b] and
Baqaee and Farhi [2020a].

(ii) a range of statistics that are specific to the endogenous growth settings, including the type density
operatorsΨΘ andΨV , operatorsΨE andΨZOwn that determine the elasticity of investment and wages
with respect to short term surplus rates, and the operator ΦZZ that depends on the substitutability
between investment types.
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In general terms, Proposition 4.5 suggests that the endogenous growth settings feature a distinct set of
primitives that determine the reaction of the economy to technology shocks and/or changes in allocation
frictions. These primitives include the transition kernel P and the entry type distribution PE .

5. Welfare Decompositions

This section presents several first-order welfare decompositions that allow us to analyze the channels
through which producer market power affects social welfare.

5.1. Second Best

We use the distance to the second-best allocation as our primary measure of welfare costs of market power.
In addition to computing this difference in a full non-linear model, we also conduct several exercises to
understand why sub-optimal market power is harmful to consumers. Specifically, we compute the first-order
approximation for the distance to the second best. Then we decompose the first-order welfare differential
into the terms that correspond to different types of misallocation.

The total elasticity of social welfare with respect to markups can be derived from the characterization of
the second-best equilibrium. First, note that, regardless of the assumptions on production and consumption
structure, the first-order approximation of the difference between decentralized and second-best welfare
levels satisfies the following equation:

d log |WDE | − d log |WSB|
ϑ− 1

≈ ΛY Eλl
Γ

[(
λγ
λlγ
ωL − ΛY σV

σV − 1

)
d log lγ
d logµΓ

log
µSBΓ
µΓ

]
+

+ ΛZEλZ
Θ

[(
1−

(
λZθ
)−1

ΨZ
θ

) d log zθ
d logµΓ

log
µSBΓ
µΓ

]
.

(51)

This is a direct consequence of Proposition 4.4, since the second-best is defined by setting the elasticity
of social welfare with respect to markups to zero. Moreover, whenever the production function has a
Cobb-Douglas form, the conditions that determine the elasticities of allocation with respect to markups
d log lγ
d logµΓ

and d log zθ
d log µΓ

also can be evaluated based on our analysis in section 4.5.2:

Corollary 2. [Distance to 2nd Best] The elasticities d log lγ
d log µΓ

and d log zθ
d log µΓ

solve the system of propagation
equations in Proposition 4.5 with d log ζγ = d logµγ .

This result holds because, under the CD production, the elasticity of product-level output with respect
to variable labor input is constant. There are no differences in capital intensity across firms. Thus, average
markups are proportional to marginal markups. In contrast, under the CES production structure, the values
of average markups depend on the distribution of relative stocks of fixed assets and the aggregate capital
stock value. The interpretation of this Corollary replicates the discussion at the end of section 4.5.2. The
direct effects of markup shocks are positive for investment and negative – for production employment. The
sign and magnitude of the effects of changes in investment on production labor allocation are ambiguous.
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The feedback between production employment and investment tends to mitigate the markup shocks.

Given the propagation equations for the allocation functions d log lΓ and zΘ, Equation 51 decomposes
the difference in welfare levels d log |WDE | − d log |WSB| into the terms that measure misallocation of
production labor relative to the second best, and the corresponding misallocation of investment. Further-
more, the component that evaluates the effect of investment misallocation can be further decomposed into
the effects of markup changes on the productivity growth rates, aggregate capital stock, sector-type density
and producer mass, as in Equation 40.

5.2. First Best

Edmond et al. [2021], and Cavenaile et al. [2020] evaluate welfare losses due to market power by computing
the distance between the decentralized allocation and the Pareto efficiency frontier. Our analysis suggests
that such comparisons do not provide an accurate estimate of the welfare costs of producer market power
because the social planner cannot implement the first-best allocation by readjusting the markup values.
Still, whenever the decentralized allocation is sufficiently close to the social optimum, the differences
between the decentralized allocation and the first-best are informative about misallocation generated by
markups. For example, suppose that, following our discussion in section 4, the social planner implements
the first-best allocation by resetting product markups and by introducing an investment subsidy. Then,
the distance to the first-best can be decomposed into the terms that represent the misallocation due to (i)
sub-optimal distribution of markups, and (ii) sub-optimal investment policies: suppose βΘ denotes the
investment subsidy, then

WFB −WDE ≈ −d log |WDE |
d logµΓ

(
µFB
Γ − µΓ

)
− d log |WDE |

d log βΘ

(
βFB
Θ − βΘ

)
. (52)

The first term in this decomposition can be computed similarly to the second-best approximation considered
above – the only difference is that in this case, the markup shocks use the first-best markup values. Then,
the following proposition allows us to evaluate the second term that measures the effects of investment
subsidies (or taxes):

Proposition 5.1. [Investment Subsidies] The elasticity of welfare with respect to investment tax or subsidy
β can be evaluated as follows:

1

ϑ− 1
d log |W| = ΛY Eλl

Γ

[(
λγ
λlγ
ωL − ΛY σV

σV − 1

)
d log lγ

]
+

+ ΛZEλZ
Θ

[(
1−

(
λZθ
)−1

ΨZ
θ

)
d log zθ

]
.

(53)

The propagation equations for allocation elasticities d log lΓ
d log βΘ

and d log zΘ
d log βΘ

:

(
IdΓ − ωLΣΨE

ΓSΓ
ΦY
)
d log lγ = −1ΓEΨESΘ

[
d logΨE

d log zΘ

]
d log zΘ

(IdΘ − ΦZZ) d log zΘ = −d log βΘ + EΨZOwn
Γ SΓ

[d log lγ ] .
(54)
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The propagation equations listed above are similar to Propositions 4.5. The only difference is that in
this scenario, we consider a change in investment subsidies d log βΘ. This shock has a direct negative effect
on investment – since the increase in βΘ is effectively a reduction in subsidies or an increase in taxes on
investment. Investment policies do not affect labor allocation directly, but the distribution of production
employment is still altered due to the changes in labor wage.

5.3. Policy-Invariant Decompositions

Welfare decompositions that we have presented so far imply that the social planner can alter the product
markups. In the case of the first-best allocation, they can also set subsidies on investment. Still, as was
mentioned in Section 4, first and second-best allocations can be achieved by altering different sets of policies.
Thus it might be useful to evaluate the importance of labor and investment misallocation without relying on
the specific assumptions about the policy tools available to the social planner. To that end, we can compute
the first-order approximations of welfare differences based on differences in the allocation functions instead
of policies. So, we compute the first and second-best allocation functions (lFB

Γ , zFB
Θ ) and (lSBΓ , zSBΘ ), and

the corresponding Taylor expansion for the welfare: e.g., for the second-best allocation we have,

d log |WDE | − d log |WSB|
ϑ− 1

≈ ΛY Eλl
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log

lSBγ
lγ

]
+
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log
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]
.

(55)

As before, the first term corresponds to the misallocation of production labor, and the second one – to
misallocation of investment. We can expand the decomposition as in Equation 40, if necessary.

6. Data, Estimation and Calibration

To map our theoretical setting to the data, we need to choose values of the following parameters:

■ Consumer preference parameters: σV , σΓ, ρ and ϑ.

■ Production function parameters ωl, and ξ.

■ Markup values (µγ) at the product level.

■ Parameters that determine the dynamics of firm types, product-level TFP, and fixed assets.

■ Aggregate growth rates of population, entry costs, and productivity.

In order to calibrate values of labor, capital and demand elasticities, and the distributions of markups
and TFP in the economy, we estimate firm-level production functions and sectoral demand using the
Compustat Annual Fundamentals data on firms’ balance sheets, BEA KLEMS data on quantity and price
indices, and BLS producer price index data. In our estimation, we allow for the endogenous dynamics of
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firm productivity and knowledge spillovers across firms. We use USPTO data on granted patents and patent
citations to compute sector and firm-level ”knowledge-transfer” weights, defined similarly to Bloom et al.
[2013]. To ensure that our results are robust to sectoral differences in markups, demand, and production
processes, we implement our production function estimation routine separately for 15 upper-tier industries
associated with 2-digit NAICS sectors. Table 16 Appendix H.3 shows the mapping between 15 upper-tier
sectors, and BEA KLEMS classification. The 5-digit NAICS industries represent the varieties of final goods.

To calibrate the parameters that govern the innovation process, we need to define the product and firm
types in the data. We assume that investments in capital, R&D, and intangible inputs are product-specific
in the benchmark calibration. We also assume away scope economies within firms. Thus, firms’ investment
choices are independent of the number of product lines owned by firms, and firm types are isomorphic to
product types. In turn, product types are defined based on the capital stock of the product, its productivity,
and the characteristics of the associated variety market. Section 6.3 describes the calibration of firm types,
product types, and the Markov process operators in detail.

This project examines the dynamics of misallocation losses in the US economy over the last three
decades. Thus, we calibrate our model using the data from two sub-samples. The ”early” sub-sample covers
the period from 1982 to 1997, and the ”late” sub-sample covers 2002 to 2017.

6.1. Firm-Level Data

[Compustat Firm-level Data] Compustat is used primarily as a source of data on the usage of production
inputs by US firms. We assume that, apart from unobserved TFP, physical output depends on three inputs,
including capital and the input bundles represented by the Compustat data items ”COGS” and ”XSGA.” In
general terms, the ”costs of goods sold” item includes the costs of materials, compensation for production
workers, and all other expenditures directly related to the production of goods. ”XSGA” item consists of the
accounting costs, advertising, delivery, and distribution expenses, as well as all other variable costs that
scale up with physical output but are not directly related to production. Consistently with these definitions,
and consistently with the literature10, we treat the expenditures listed in the ”COGS” category as a measure
of variable costs of production. We also assume that data item XSGA represents expenditures on dynamic
inputs set either at the beginning of the current period t or at the end of the period t− 1. A measure of
capital stock is constructed via a perpetual inventory method using gross and net values of capital stock
from Compustat (data items ”PPEGT” and ”PPENT”).

We also use Compustat data items as proxies for firm TFP. These items include reported capital
expenditures, SGA expenditures, R&D expenditures, average R&D expenditures across all firms within the
same KLEMS sector, average R&D expenditures across all other sectors, weighted with sector-level citation
10Traina [2018] assumes that XSGA and COGS represent expenditures on the same bundle of variable inputs and uses the sum

XSGA+COGS as a measure of variable input usage. In their benchmark, De Loecker et al. [2020] assume that XSGA item
represents fixed costs of production that don’t affect the value of firm output in the short run. In their robustness checks
De Loecker et al. [2020] also show that the specifications that treat both XSGA and COGS as measures of variable inputs produce
results that contradict the first-order conditions derived from firm optimization problems. We adhere to the compromise approach
and treat XSGA as a dynamic input given this diversity of methods.
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rates, as well as lagged values of these variables. To control for selection into Compustat, we reweigh
firm-level observations when we compute the average R&D expenditures. The weights that we use are
based on employment values reported in Compustat and the BDS data on the distribution of US firms across
employment classes11.

In our production function estimation routine, we assume that each Compustat observation corresponds
to one product line. The structure of the data is naturally at odds with this assumption since Compustat data
are collected at a firm level, and, as was pointed out by Bernard et al. [2010] and Ding [2020], multi-product
and multi-industry firms comprise a significant share of the total US firm population. They produce more
than half of the manufacturing output. Still, we attempt to control firms’ product scope by excluding the
firms that report owning business segments with different 3-digit NAICS codes. Our estimation framework
also does not allow for demand heterogeneity, and thus, we filter out firms that report selling more than
25% of their output to foreign entities.

[UPSTOData]In our theoretical framework and estimation, we allow for the presence of non-pecuniary
externalities in TFP dynamics. We assume that the magnitude of external effects generated by firms θ′’s
research and θ is proportional to the R&D expenditures of firm θ′ times the knowledge transfer rate between
the firms θ and θ′. The UPSTO data on patents of US firms is used to evaluate the knowledge transfer rates.
In our benchmark specification, we adhere to the methodology of Jaffe [1986], and Bloom et al. [2013] and
compute the knowledge spillover weights based on the firm patent counts in different technology classes.
In an alternative specification, the spillover weights are computed using the citation counts of patents.

6.2. Markup, Production Function and Demand Estimation

Our estimation procedure is based on the ACF-corrected production function estimation algorithm developed
in Ackerberg et al. [2015], and R&D-augmented production function estimation suggested by Doraszelski
and Jaumandreu [2013] and Buettner [2004]. We further augment the estimation procedure in order to
address the critiques of Bond et al. [2021] and De Ridder et al. [2021] that concern on the potential effect
of the output price bias on markup estimates. The estimation algorithm described below is implemented
separately for 15 sector groups12.

In the benchmark specification, all firm inputs, including COGS, capital, and XSGA, are aggregated
via Cobb-Douglas, so that w.l.o.g. SGA’s contribution to output could be thought of as a part of TFP. The
consumer preferences are of the CES form. We describe the production function estimation procedure
under non-linear production and demand specifications in Appendix Section H. The sales shares at the
11Firm-level employment weights are constructed as follows. First, given the Compustat data on employment, we compute

the shares of Compustat firms within each BDS employment class, e.g., firms with 20 to 99 employees, firms with 100 to 499
employees, and so on. To avoid the small sample bias, we joined all the BEA employment classes with less than 20 employees
into one class. Given the employment class shares in Compustat (denoted by fL,Compustat

i ) and in BDS (denoted by fL,BDS
i ), the

computed weights are proportional to the ratios fL,BDS
i /fL,Compustat

i .
12The definitions of sector groups are listed in Table 16 in the Appendix: the sector groups are aligned with the 2-digit NAICS

sectors whenever Compustat sample allows it.
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product level are determined as follows:

λνγt =

(
yγt
Yνt

)1− 1
σΓ

, (56)

Thus, the product sales shares primarily depend on the physical output produced by firms (yγt) and on the
sectoral output index Yνt. Note that this implies that firm-level and sectoral output can serve as precise
controls for the output prices. To fit this equation to the data and pin down the demand parameters, we
have to determine the production function specification and the generating process for TFP. Since firm
productivity is unobserved, we also need to construct a proxy function for firm TFP.

[TFP] We assume that the data generating process for productivity is consistent with the assumptions
stated in Section 3.4. Producer’s state variables include productivity and capital stock and the ”variety
type” of the corresponding sub-sector. Firms’ investment then is determined by the firm’s state and firms’
expectations over their competitors’ investments, aggregate investment, and aggregate productivity growth.
Formally, the best response investment functions satisfy

zSGA
γt = Z̄SGA (aγt, kγt, ν, Z) ,

zKγt = Z̄K (aγt, kγt, ν, Z) ,

zAγt = Z̄A (aγt, kγt, ν, Z) .

(57)

In the data, firms’ R&D investment and SGA expenditure vary conditional on capital investment, and
capital investment has a non-zero variance conditional on R&D and SGA expenditures. We assume that the
unobserved differences in producer types generate this variation. E.g., it could be the case that some firms
own technologies that function better with a larger stock of capital or with a larger stock of intangible
assets; alternatively, such conditional variation in investment could also originate from the differences in
costs of loanable funds. Thus, we will include SGA, capital and R&D investment in the set of TFP proxies.
We assume that either conditional on zKγt and zSGA

γt , R&D expenditures are strictly monotone in product TFP
aγt, or similarly, conditional on the value of R&D and SGA, the capital expenditures are a strictly monotone
function of product TFP. Inverting either of the equations above conditional on the rest of the arguments of
Z̄SGA, Z̄K or Z̄A, and taking logs, we obtain the expression for the R&D-augmented TFP proxy function:

log aγt = A
(
zSGA
γt , zKγt, z

A
γt, kγt, ν, Z

)
. (58)

To note, due to the multi-dimensionality of the productivity and capital stock distributions within
sectors, it is not possible to fully control for the differences in variety types. Instead, we will use the sub-
sector-level moments of capital stock, capital expenditures and R&D to proxy for sector type differences.

[Output] Physical output yγt is determined as follows:

log yγt = ωL
t log lγt + ωK

t log kγt + A
(
zSGA
γt , zKγt, z

A
γt, kγt, ν, Z

)
. (59)
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Then, Equation 56 is mapped to the data in the following fashion:

log λνγt =

(
1− 1

σt

)(
ωL
t log lνγt + ωK

νt log kγt+

+A
(
zSGA
γt , zKγt, z

A
γt, kγt, ν, Z

)
− log Yνt

)
+ eγt.

(60)

eγt is the measurement error term.

The estimation equation above relies on both firm-level data on inputs and investment, and the sectoral
quantity indices. The coefficient on log Yνt allows us to derive an estimate of product-level substitution
elasticity σt, as was originally suggested by Klette and Griliches [1996] – later on, similar methodology was
also adapted by De Loecker [2011] and Gandhi et al. [2020]. In turn, the coefficients on production inputs
identify elasticities ωL

t , ωSGA
t and ωK

t . In practice, we construct a proxy for log Yνt using the BLS PPI data
on 5-digit industry level and Census SUSB data on the sales shares of 5-digit industries in 2002, 2007, 2012
and 2017.

Consistently with the Ackerberg et al. [2015] methodology, equation 60 is estimated in two steps. In
the first step, we identify and filter out measurement error term eγt by non-parametrically regressing the
producer sales shares on production inputs, sectoral quantity indices, and all the arguments that enter the
TFP proxy function. In the second step, we exploit our assumptions on the dynamics of TFP to identify
demand and production parameters and the parameters that determine the dynamics of productivity. The
estimation equation has the following form: let log λ̂tνγ = log λtνγ − eγt denote the fitted values of firm
sales shares from the first step of the estimation, then

ψγt = log λ̂tνγ −
(
1− 1

σt

)(
ωL
νt log lγt + ωK

νt log kγt − log Yνt
)
,

ψγt =
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)(
ϕOwn
νt log zAγ(t−1) + ϕOwn, 0
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=0 +

t−1∑
τ=t−5

ϕExt,τ
νt z̄Aντ+

+ωSGA
νt zSGA

γt +
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νt z̄At + F

(
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(61)

Here eAγt is the idiosyncratic component of TFP that producers do not observe until period t, and F (·) is
typically approximated by a 3-rd degree polynomial. z̄Aντ denotes the average R&D expenditure within
sector ν in period τ , and z̄At – average expenditure across all sectors in the economy (weighted with
patent citation rates). The term ϕOwn

νt log zAγt summarizes the effect of producer’s own R&D expenditures on
their TFP, and the term ϕOwn, 0

ν(t−1)1zAγ(t−1)
=0 – the effect of reporting 0 R&D expenditures for the Compustat

firms13. In turn, the sums
∑t−1

τ=t−5 ϕ
Ext,τ
νt z̄Aντ and

∑t−1
τ=t−5 ϕ

Ext,τ
t z̄At , represent the effects of non-pecuniary

externalities on the dynamics of firm TFP.

We estimate Equation 60 with a 7-year rolling window and within each upper-tier sector.
13We impute $1000 R&D expense for firms that report zero R&D, so the coefficient ϕOwn, 0

ν(t−1) identifies the effect of reporting zero
R&D relative to reporting $1000 R&D expense. $1000 is a minimum value of R&D investment reported in Compustat across all
sectors and years.
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[Markups, Surplus rates and Profits] We obtain the marginal markup estimates using De Loecker
et al. [2020] formula:

µ̃γt = ω̂L
t

pγtyγt
COGSγt

. (62)

ω̂L
νγt is the estimate of the elasticity of firms’ output with respect to variable inputs. ω̂L

t is constant under
Cobb-Douglas production function specification.

Apart from the marginal markups, we also estimate the distributions of average markups and profit
rates for Compustat firms. Average markups and profits are informative about evolution of producer market
power in the US economy, and producer’s incentives to innovate and accumulate capital. The ratio of
sales to costs of goods sold is an appropriate measure of average markups in our environment. Profit
rates are computed as a difference between establishments’ volume of business and their total expenditure,
normalized by sales.

6.3. Calibration: Firm Types, Innovation and Miscellaneous Parameters

[Firm Types and Sectoral Structure] We assume that firm TFP and capital stock can take five different
values in each upper-tier sector. Also, each variety sector in our economy contains up to 3 product lines.
Together these assumptions imply that there are around 3000 firm (and product) types in each upper-tier
sector. Values of capital and TFP correspond to the quantiles of capital stock reported in the Compustat
data and estimated productivity, respectively.

[TFP and Capital Dynamics, Entry and Exit] We assume that the transition probabilities between
firm types are of logit form. So, the future value of capital stock for a firm with kγt units of capital in period
t is drawn from the following distribution: suppose k̃ and k̃ +∆ > k̃ represent two subsequent capital
types, then

P
[
kγ(t+1) = k̃|kγt

]
=

1

1 + expςk̃−ςZ logZK
γt−ςKkγt

− 1

1 + expςk̃+∆−ςZ logZK
γt−ςKkγt

. (63)

In the equation above, thresholds ςk̃ and ςk̃+∆ vary across capital types k̃, and satisfy ςk̃+∆ > ςk̃ . ZK
γt is the

value of capital expenditures for product γ in period t. The distribution of future TFP values is specified in
a similar fashion. The values of future TFP are allowed to depend on the firms’ investment in R&D, their
investment in intangibles (SGA), and the knowledge spillovers across firms. The dynamics of firms’ TFP
and fixed assets are independent. We choose the threshold paramaters and elasticities of the transition
probabilities with respect to investment by matching the transition probabilities and investment rates
that we observe in the data. In this case, we define the investment rates as a ratio of firms’ investment of
a specific to their variable surplus14. Markup values for each firm type are imputed as a cost-weighted
averages for all the firms that belong to a corresponding type in the Compustat data. Firms’ entry and exit
rates are computed in a similar way based on the Business Dynamics Statistics data.
14In some cases, the investment rates that we observe in the data imply transition probability elasticities that violate Assumption 4.

For such firm types, we assume that some share of the investment represents expenditures on variable inputs.
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Table 2: Values of Calibrated Parameters

Parameter Early Sub-Sample Late Sub-Sample

Inter-Temporal EOS, ϑ 1.5 1.5

Disount Factr, ρ 4% 4%

Inter-Sectoral EOS, σV 3.26 3.26

Output Growth Rate, gY 3.19% 1.95%

Population Growth Rate, gL 1.09% 0.81%

Entry Cost Growth Rate, gE −0.59% 0.37%

Table 3: Inter-Sectoral Substitution Elasticities: 1985 and 2015.

Level of Aggregation EOS Value Standard Error 5% Lower Bound 5% Upper Bound

63 KLEMS sectors 3.259 0.070 3.122 3.396
4-digit NAICS 5.457 0.173 5.117 5.797
5-digit NAICS 8.227 0.201 7.833 8.622
6-digit NAICS 9.456 0.184 9.095 9.817

[Calibrated Parameters] For our counterfactual exercises, we also need to determine the values
of several other parameters that are difficult to infer from the firm-level financial statements data. These
parameters include the following

(i) parameters of consumer preferences: the intertemporal substitution elasticity 1/ϑ and discount factor
ρ; in addition, since our calibration contains two levels of aggregation, we also need to set the value
of intersectoral substitution elasticity;

(ii) aggregate growth rates of population (gL), entry costs (gE), and aggregate productivity (gA);

The values of ϑ and ρ are set to 1.5 and 4% respectively, consistently with the literature15. The values of US
population growth rates are taken from the BLS data. The growth rates of real output match the values
reported by BEA. The growth rate of entry costs is calibrated to match the population growth rate and the
growth rate of the total number of firms in the US economy documented in the BDS.

[Upper-Tier Sectoral Preferences] The intersectoral elasticities of substitution are estimated using
the following standard equation:

log λνt = log λ̄ν +

(
1− 1

σ̂V

)
(log Yνt − log Yt) + eνt. (64)

log λ̄ν denotes a sector fixed effect. In practice, we estimate this equation using BEA data on sectoral
15Many studies, including e.g. Aghion et al. [2019], Akcigit and Ates [2019], and [Cavenaile et al., 2020], rely on log preferences

with ϑ = 1; Acemoglu et al. [2018] set ϑ to 2. Regarding the calibration of consumer discount factor, most studies either infer it
from the dynamics of the real interest rates (Aghion et al. [2019] sets ρ = 5.3%,, based on a 6.1% interest rate), or set it to a
predetermined value close to zero: Acemoglu et al. [2018] set ρ to 2%, Akcigit and Ates [2019] set ρ to 5%, Cavenaile et al. [2020]
– to 4%.
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Table 4: Unmatched Aggregate Statistics: Calibration and Data

Early Sub-Sample Late Sub-Sample

Variable Calibration Value Data Value Calibration Value Data Value

Aggregate Markup 1.345 1.342 1.418 1.427
Aggregate Entry Rate 0.098 0.112 0.089 0.087
Aggregate Exit Rate 0.097 0.095 0.080 0.081

sales shares and quantity indices. The resulting value of substitution elasticity is shown in Table 3. For
comparison, we also list the estimates of substitution elasticities at other levels of aggregation16.

6.4. Estimation Results and Model Fit

Our calibration matches the aggregate growth rates of output, population and aggregate producer masses
by construction. We also match the surplus, investment, entry and exit rates, average marginal markups
and profits at the firm-type level. We can also show that the aggregate values of these firm-type level
statistics are consistent with the data. In Table 4 we list the values of aggregate markups, exit and entry
rates that are implied by our calibrations. Notably the average markup value raises only by 8% between
the early and late samples. The magnitude of the markup trend in Table 4 is not equal to the increase in
average markups in Compustat data from 1980 to 2017 because we average markup values across years for
each sub-period to calibrate the model.

Notably, the values of the aggregate productivity growth rates are in line with the BLS productivity
estimates17. The TFP growth in the late sub-sample calibration is equal to 1.07%. This value is quite close
to the BLS labor productivity18 estimate of 1.4% for the period from 2005 to 2018. Similarly, for the early
sub-period our model calibration suggests the TFP growth rate value of 1.9%. The corresponding BLS
estimate is equal to 1.7%.

Table 5 displays the sales-weighted averages of estimated parameters for the early and late sub-samples.
In both periods the estimated production functions are close to the constant returns to scale. The output
elasticity with respect to variable inputs is around 90% throughout the data sample. The capital elasticity
varies between 5 and 9 percent. While the elasticities of output with respect to variable inputs and capital
are stable across years, the SGA elasticity increases significantly between 1980 and 2017. In our calibration,
the SGA elasticity is set to 15% in the early sub-period, and the corresponding late sub-period value is 22%.
Finally, we observe a weak upward trend in the substitution elasticity between product varieties. Notably,
the estimates of σΓ that we derive from the production function estimation routine are rather close to the
values that we obtain from reduced form estimation.
16We have used the BLS PPI indices and Census SUSB sales shares at the respective levels of aggregation to estimate elasticities at

the 4, 5 and 6-digit levels.
17E.g., see Sprague(2021).
18Labor productivity (as opposed to TFP) represents an appropriate benchmark in this case, because capital intensity and labor

composition of workers do not change along the balanced growth path.
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Figure 4: Benchmark Markup Estimates

(a) Output Bias Correction (b) Output Bias and Endogenous Growth

Table 5: Estimated Parameters: Production and Demand

Sample Labor Elasticity (%) Capital Elasticity (%) Returns to Scale (%) Demand EOS SGA Elasticity (%)

Early 91.02 6.08 97.11 8.87 14.81
Late 89.51 8.16 97.67 9.03 21.92

Figure 4 displays the evolution of average cost-weighted markups for the US economy. In the left panel,
we plot the estimates computed using the standard De Loecker et al. [2020] methodology and the estimates
that are corrected for the output price bias. Overall, these time series display similar dynamics, although
the modified estimates generate higher markup levels for most years. The right panel of Figure 4 plots
the markup estimates that are computed using our benchmark methodology. In this case, we correct the
markup estimates for output price endogeneity and allow for the endogenous accumulation of firm TFP.
Our results suggest that the estimates of output elasticity with respect to variable inputs obtained using the
conventional methodology are on average biased downward by 5-7% because the standard methods omit
R&D expenditures from the estimation.

[Discussion: Markup Estimates vs. Market Power] Our theoretical analysis treats markups as
exogenously fixed frictions that determine firms’ variable surplus rates. Consistently with this assumption,
we use structural estimates of marginal markups to calibrate firm surplus rates in our counterfactual
exercises. A potential drawback of this approach is that the marginal markup estimates could capture
distortions not generated by producer market power. Thus, our model calibration could either over or
underestimate the true extent of market power and welfare losses due to sub-optimal markup levels. Our
response to this criticism is twofold. First, in our calibration, we only use averages of markup estimates
computed at the firm-type level, i.e., conditional on firm TFP and capital stock values. Thus, as long as other
distortions average out to zero for each firm type, misallocation unrelated to market power should not
affect our results. Second, our calibration strategy is justified by the fact that strategic interactions between
firms in the dynamic oligopoly settings can generate markup values that do not depend on the consumers’
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Table 6: Counterfactual Results I, Late Sub-Sample

% Changes in Macro Outcomes Relative to Benchmark Calibration

Shock Welfare Output Growth Rate Mass of Entrants Entry rate

1% Increase in Markups -0.507 -0.397 -2.731 5.030 0.018
1% Investment Subsidy 0.173 0.001 1.539 -0.694 -0.051

Zero Markup Variance, µ = 1.276 13.75 25.28 31.89 -79.08 6.311
CES Markups, µ = 1.44 11.24 18.31 31.89 -71.67 6.311
Marginal Cost Pricing, µ = 1 10.67 16.79 31.89 -95.19 6.311

demand structure or production sets of firms. E.g., it follows from folk theorem literature19 that any dynamic
oligopoly game generically has multiple equilibria. Hence, there always exist multiple equilibrium sales
and markup distributions in such settings, even if we hold demand and production structure constant. In
addition, in Appendix, we describe the generalized oligopoly setting that, depending on the structure of
strategic interactions between producers, can generate virtually any markup distribution, including the
first-best and second-best markup values.

7. Counterfactual Exercises

We start our analysis by conducting several simple exercises that provide intuition for the first and second
best comparisons. For both sub-samples, we document the reaction of the economy to the following markup
shocks:

■ [1% Increase in Markups] Markups are increased by 1%.

■ [Zero Markup Variance] Variance of markups is reduced to zero, and all markups are reset to their
average (unweighted) level.

■ [CES Markups] All markups are equal to σV
σV−1 – this is the level of markups that implements

optimal allocation in static models with free entry.

■ [Marginal Cost Pricing] All prices are reset to the producers’ marginal costs (marginal cost pricing
benchmark).

Table 6 documents the results of these counterfactual exercises for the late sub-sample. Our model predicts
that the decline in markup levels or the decline in variance of markups would benefit the US economy. In
fact, an increase in markups leads to a decline in both, the growth rate and one period output. This occurs
primarily because higher markup levels over-stimulate entry. The subsequent increase in labor demand
leads to a decline in per-firm production employment and investment. These results also suggest that the
uniform increase in markups would lead to a slight increase in business dynamism, since due to lower
investment incumbent firms on average exit more often.
19E.g., see Fudenberg and Maskin [1986], and Fudenberg and Maskin [1990].
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Table 7: Counterfactual Results I, Early Sub-Sample

% Changes in Macro Outcomes Relative to Benchmark Calibration

Shock Welfare Output Growth Rate Mass of Entrants Entry rate

1% Increase in Markups -0.218 -0.352 -0.233 2.764 -0.016
1% Investment Subsidy 0.143 0.008 0.780 -0.824 - 0.042

Constant Markups, µ = 1.258 20.46 19.43 84.02 -61.93 -0.565
CES Markups, µ = 1.44 18.42 13.78 84.02 -50.63 -0.565
Marginal Cost Pricing, µ = 1 17.87 12.02 84.02 -89.91 -0.565

The increase in investment subsidy has the opposing effect on the economy. The difference between
labor costs of incumbents and entrants leads to a decline in entry. An increase in investment of incumbents
also lowers the entry rate and raises the aggregate productivity growth. At the same time, the increase
in static output is negligible: production employment is not affected by the investment subsidies directly,
and since the subsidy is uniform across firms and investment types the composition of sectors does not
change significantly. Notably, the results presented in Table 6 suggest that changes in markup levels (or
markup variance) have a more profound effect on social welfare relative to changes in investment subsidies
of similar magnitude.

Due to the properties of CD-CES calibration and due to the fact that we have assumed the entrant
type distribution that does not depend on equilibrium investment, the growth rate value, and the value of
entry rate do not depend on the level of markups – if markups are uniform across firms and products. For
the late sum-sample calibration, the transition to the balanced growth path with zero markup variance is
associated with 32% increase in the aggregate productivity growth rate, and a 6% increase in the entry rate.
Reduction in the variance of markups across products leads to an decline in the surplus rate and profits of
larger producers, and the decline in future profits induced large firms to invest less. In turn, the entry rate
increases because large incumbents exit more often whenever they invest less in intangibles and capital
stock. On the aggregate level, these effects are stronger than the impact of markup reduction on the small
producers, who experience an increase in their profits and investment.

The counterfactual results for the early sub-sample are overall similar. A 1% percent increase in markups
again lowers the productivity growth rate, and static output. These effects are larger in magnitude relative
to the increase in output and productivity growth associated with the investment subsidy. One notable
distinction between the two sub-samples is that both the rise of market power and the reduction in markup
variance lower the entry rate in the early data sample. Markups shocks that we consider depress entry in the
early sample due to two reasons. First, the correlation between markups and productivity, or alternatively,
markups and firm size, is stronger in the later period. Thus, whenever the markup variance declines, the
increase in investment of smaller companies has a stronger effect on the entry rate relative to a decline in
investment of large firms. Second, as Table 11 suggests, markup estimates in the early sample are positively
correlated with entry rate. Thus, an increase in markups generates a larger increase in profits of entrants.

[First-Best Comparisons] Table 8 contains the estimates of welfare, output and growth rate gains
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Table 8: Welfare Analysis: First and Second Best

% Changes in Macro Outcomes Relative to Benchmark Calibration

1. Late Sub-Sample

BGP Welfare Output Growth Rate

First Best 34.45 38.01 223.3
Second Best I (Markups) 19.71 19.47 124.44
Second Best II (Investment) 20.21 -5.485 258.9

2. Early Sub-Sample

BGP Welfare Output Growth Rate

First Best 31.06 39.98 127.5
Second Best I (Markups) 20.88 20.17 86.13
Second Best II (Investment) 18.24 -6.747 150.5

Table 9: First-Best: Policy decompositions

Welfare changes in % of Decentralized BGP Welfare.
Sample Total Welfare Market Power Investment Subsidies R&D Capital SGA

Late Sub-Sample 36.09 22.07 14.02 -0.686 3.212 11.49
Early Sub-Sample 36.70 6.146 30.55 5.602 0.996 23.95

generated by the first and second-best balanced growth paths. The first-best equilibria feature higher output
levels and faster productivity growth for the early and late sub-periods, and the total effect of misallocation
on welfare is significant in both samples. Moreover, the first-best estimates indicate that the distance to
first best has increased by 3% between the early and late sub-periods. Notably, while static output gains
remain stable across the time periods, the increase in productivity growth rate is much larger for the late
sample. This suggests that the increase in misallocation implied by our calibrations is due to an increase in
under-investment.

Table 9 contains the results of the first-order policy decompositions for the early and late sub-samples.
The first-order changes in welfare levels are overall similar to the non-linear estimates of the distance
to frontier. Still, the counterfactual results suggest that the nature of misallocation differs significantly
across two data samples. In the earlier sample, investment subsidies play a much bigger role relative to
the inefficient markup distribution. In fact, the latter accounts only for 17 % of the welfare differential. In
contrast, in the later sample, the ”elimination” of firm market power is responsible for 61% of the distance
to the first best. The takeaways of these exercises are in line with predictions of the literature on the rise
of market power. If the social planner can alter producer markups and investment costs, the difference
between the markup level that they pick and the decentralized markup values is larger whenever the
decentralized markups are higher. To be more specific, in these exercises, the social planner chooses the
aggregate markup equal to 1.06 in the late sub-sample. The first-best markup value for the early sub-sample
is equal to 1.14.

Finally, to conclude our description of the first-best allocations, Table 10 presents the detailed first-order
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Table 10: First-Best BGP: Detailed First-Order Decomposition

Welfare changes in % of Decentralized BGP Welfare.
Sub-Sample Total Growth Rate Capital Stock Reallocation + Labor Costs Love-of-Variety

Early 36.70 12.80 1.766 13.28 8.850
Late 36.09 26.62 2.070 5.019 2.379

Figure 5: Markup Distributions: Decentralized and Second-Best BGPs

(a) Early Sub-Sample (b) Late Sub-Sample

decompositions of the distance to the first best. These decompositions rely on Equation 40 that determines
the social return on investment, and the corresponding first-order condition for production employment.
In the early sub-period, the social planner uses investment subsidies and markups to readjust inefficient
entry level, and induce the incumbents to invest more in intangibles. In the late sub-period, the growth rate
rate channel is much stronger. This again suggests that investment – and under-investment – has a large
impact on welfare in the late sub-sample.

[Second-Best Comparisons: Markups] The estimates in Table 8 indicate that the distance to the
second-best optimum, in which the social planner sets markup values, declines insignificantly between
the sub-periods. This result is seemingly at odds with the first-best policy decompositions that we have
discussed above. To understand why our primary measure of the welfare loss due to markups declines
over time, we need to examine the distribution of the ”socially-optimal” markups at the micro-level. Figure
5 plots the histograms of the decentralized markup values and the corresponding second-best policies.
Table 11 records several descriptive statistics for the markup distributions in the second-best optimum and
decentralized equilibrium. In both data samples, the second best markups are more dispersed, and have
higher average values. Still, the distributions of markups across producer types differ significantly between
samples. In the early sample, the markup values picked by the social planner are negatively correlated with
products’ capital stock and TFP. At the same time, the correlation between second-best markups and entry
rates is positive. These properties of the socially-optimal markup distribution suggest that in the early
sub-period the social planner uses markups to readjust the entry rate, and increase the equilibrium mass of
firms in the economy. The first-order decomposition of the distance to second-best presented in Table 12
implies the same. In response to the second best policy shocks, the labor is reallocated from incumbents to
entrants, and the increase in the mass of firms in the economy has a positive effect on welfare.
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Table 11: Second-Best Markups: Descriptive Statistics

Statistic Early Sample, DE Early Sample, SB Late Sample, DE Late Sample, SB

1. Moments of Markup Distributions

Mean Markup Value 1.258 2.554 1.276 4.0123
Standard deviation 0.019 1.334 0.167 2.362

2. Correlations of Markups with State Variables, %

TFP 39.12 -35.97 57.16 7.858
Capital 10.99 -8.692 44.11 -8.604

3. Correlations of Markups with Exit/Entry rates, %

Entry Rates 9.419 7.496 1.627 13.53
Exit Rates -8.401 -5.424 -0.151 10.57

4. Correlations of Markups with Investment, %

Total Investment 13.69 -27.49 51.79 7.047
TFP Investment Share 25.14 -8.830 19.59 1.545

Table 12: Second-Best BGP: Detailed First-Order Welfare Decomposition

Welfare changes in % of Decentralized BGP Welfare.
Sub-Sample Total Growth Rate Capital Stock Reallocation + Labor Costs Love-of-Variety

Early 2.168 3.033 0.260 0.890 -2.016
Late 36.72 66.19 -7.012 -33.03 10.57

The picture is different during the late sub-period. Second-best markups are positively correlated with
firm productivity, total investment, and the share of investment devoted to R&D and SGA. Consistently
with these properties of the second-best markups, the first-order decomposition indicates that the increase
in productivity growth acts as a leading source of welfare gains in the late sub-sample. Changes in output
and allocation of labor between entrants and incumbents that are induced by the second-best policies are
harmful to social welfare. Finally, the comparison of second-best markup distribution reveals why the
welfare losses due to market power fall (marginally) between time periods. In the late sub-sample, the social
planner uses markups to encourage investment in productivity, and thus they allocate higher surplus rates to
larger companies that invest intensely in intangibles. This implies that overall the decentralized distribution
of markups is closer to the second-best in the later sample. This informal observation is supported by
Table 13 that records the correlation between the decentralized and second-best markup values for the two
sub-samples.

Table 13: Correlation of Decentralized and Second-Best Markup Levels, %

Early Sample Late Sample

-38.34 -11.04
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8. Conclusions

In this project, we examine the effects of market power on social welfare in settings with endogenous
technological progress and free entry. We propose several ways to assess welfare losses due to the sub-
optimal distribution of markups. Our primary measure is the distance between the decentralized allocation
and the second-best equilibrium in which the social planner is only allowed to set product prices or markups.
We show that in this equilibrium, the social planner uses markups to balance out the impact of investment
and production labor misallocation on welfare. We also decompose the distance to the socially-optimal
balanced growth path allocation into terms that separately evaluate misallocation due to market power
and inefficient investment. This exercise allows us to indirectly evaluate the effects of markups on welfare
when the investment is at the social optimum. Finally, we compare the second-best and first-best equilibria
to the allocation the social planner chooses if they can only subsidize or tax investment. We argue that the
distance between this alternative second-best balanced growth path and the first best can also be interpreted
as a measure of the social costs of market power.

In our applications, we compute the welfare losses due to sub-optimal markup distribution for the
US economy from 1980 to 2017. We rely on Compustat firm-level data and BDS to calibrate our model.
Our results indicate that producer market power generates significant social welfare losses throughout the
sample period. The welfare level at the second-best equilibrium with socially-optimal markup distribution
is on average 20% higher relative to the decentralized BGP. Somewhat surprisingly, if we use the distance
to the second-best as a measure of welfare losses due to markups, market power costs do not increase over
time despite the rise in market power. The detailed analysis reveals that the upward trend in markups
is not costly for society because the markup distribution is closer to the social optimum in later periods.
In the late sub-sample, the social planner assigns higher surplus rates to companies that invest in R&D
and intangible capital in order to encourage economic growth. This channel is much weaker in the earlier
periods. In contrast, the first-best decompositions suggest that, once the social planner is allowed to manage
investment and markups, the costs of market power increase from 7% to 22% from 1980 to 2017.
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Appendix

A. Toy Model: Proofs

[First Best] Throughout this section, aggregate nominal output is normalized to 1. To get the first-best
optimum conditions, we solve:

max
M,l,z

W =
(l)(1−ϑ) (M)(1−ϑ) σ

σ−1

1− exp−ρ+(1−ϑ)(1+z)ω
,

s.t. (M)−1 = l + z + δLE .

(65)

Note that (1 + z)ω is the value of the output and productivity growth.

The FOCs are as follows: ∆ denotes the Lagrange multiplier on the labor market clearing constraint

FOCM : W (1− ϑ)
σ

σ − 1
= ∆,

FOCl : W (1− ϑ) = ΛY ∆,

FOCz : W (1− ϑ)ω
z

1 + z
ΛF = ΛZ∆.

(66)

From here, we can derive the optimal allocation by dividing the FOCs by one another.

[Fixed Markup Equilibria] In a decentralized equilibrium, producers decide on investment by
solving the following Bellman equation:

V (at,At,Mt) = max
z

{St (lt, at,At,Mt)− wtzt+

+(1− δ) exp(−r)V (at+1,At+1,Mt)} .
(67)

where At denotes the aggregate productivity in period t, r – the interest rate, and St = ptyt − wtlt =

ptyt

(
1− 1

µ

)
is the individual firm’s surplus at time t.

To get to the decentralized allocation under markup µ, we need to solve the Bellman. Now, we rewrite
the firm value function in a following way

V0 (a,A,M) = max
(zt)

∞
t=0


∞∑
t=0

 1

M
(atlt)

1− 1
σ(

At l̄t
)1− 1

σ

(
1− 1

µ

)
− wtzt

 (1− δ)t exp−rt

 ,

s.t. l = (wµ)−1 (M)−σ (a)σ−1(
At l̄t

)σ−1 ,

l̄ = (Mwµ)−1 .

(68)

The constraints simplify to l = (Mwµ)−1 (a/A)σ−1.

Note that firm sales in each period are equal to 1/M, and thus, the surplus is equal to 1/M
(
1− 1

µ

)
.
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We also know that, due to the BGP properties, investment in equal across time periods, and wages are equal
to
(
µLY

)−1. The problem above simplifies to

V0 (a,A,M) = (M)−1 max
(zt)

∞
t=0

{ ∞∑
t=0

((
at
At

)σ−1(
1− 1

µ

)
− zt
µl̄t

)
(1− δ)t exp−rt

}
. (69)

Thus, the FOC is

FOCz :
z

µl
= ω (σ − 1)

z

1 + z
ΛFπ

(
1− 1

µ

)
. (70)

FOCz :
z

l
= ω (σ − 1) (µ− 1)ΛFπ z

1 + z
. (71)

This gives us the expression for the firms’ value in this setting:

V (A,A,M) =
(
ΛFπ + 1

)(
1− 1

µ

)
(M)−1

(
1− ΛFπω (σ − 1)

z

1 + z

)
. (72)

From here, we derive the condition for the entry:

wLE = V (A,A,M) (73)

LE

l
= µMV (A,A,M) (74)

From here, we derive the ratio of investment to entry labor:

LE

z
=

1

1− δ

ΛFπ

ω(σ − 1)ΛFπ

(
1− ΛFπω (σ − 1)

z

1 + z

)(
1 +

1

z

)
(75)

Given that the equilibrium entry rate is always equal to δ,

ΛE,µ

ΛZ,µ
=
δLE

z
=

δ

1− δ

(
1

ω (σ − 1)

(
1 +

1

z

)
− ΛFπ

)
. (76)

Note also that the (nominal) interest rate is equal to r = ρ+ (ϑ− 1) (1 + z)ω – this is independent of the
markups, production labor, or producer mass.

[Second-Best] To derive the optimal second-best markup value, note that the following conditions
hold:

d log l
d logµ

= − µ

µ− 1
. (77)

d logM
d logµ

= ΛY,µ µ

µ− 1
. (78)

Then, the planner’s optimality condition is reduced to

1 = ΛF,π δ

1− δ

ΛY

ΛE

(
1

σ − 1
− ω

z

1 + z
ΛF

)
. (79)
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B. General Model Setting: Miscellaneous Comments

[Discussion: Stochasticity of TFP and Capital] Equation 14 implicitly suggests that both TFP and capital
evolve stochastically at the product and firm level: producers can influence the shape of distributions of
their state variables in the next period, but they cannot fully get rid of variation in either capital or TFP. TFP
is stochastic because of the differences in success rates of inventors, scope of innovations or the magnitude
of productivity improvements associated with the introduction of new technologies. Uncertainty in future
fixed asset stocks could be caused, e.g., by variability of depreciation rates: conditional on the value of
capital stock and the age of equipment, some pieces of machinery can still wear off at different rates, and
break down at random. The assumption that the process for firm TFP growth is random is standard for
the growth literature, however the same is not true to for capital accumulation, which is assumed to be
deterministic in most growth frameworks that feature capital20. It is thus useful to note that although our
setting does not allow capital to grow deterministically, it allows us to consider the limit cases in which the
variance of future stock of fixed assets tends to zero, conditional on investment, and the distribution of
future capital stock approaches the Dirac delta function.

[Discussion: Creative Destruction via Passive Selection] In our setting there are no fixed costs,
and thus there is no active selection: exit of products and firms occurs exogenously whenever producers are
hit by negative ”exit” shocks; in the absence of such a shock, firms will always decide to produce non-zero
quantities in all of their product lines. Thus, exit of products in our setting should be interpreted as products
becoming completely obsolete – due to exogenous demand or technology factors. The absence of active
selection does not mean that the forces of creative destruction are not present in our setting: instead of
inducing product exit, competition affect firm profits via the intensive margin, by either increasing or
decreasing producers’ market shares.

Here we also would like to highlight the fact that the exit probability distributions implicitly specified
in Equation 14 allow us to replicate allocations that are generated under Bertrand competition with perfect
substitutes – this industry structure is traditional for the frameworks with creative destruction based on
Aghion and Howitt [1992], [Grossman and Helpman, 1991b] and/or Klette and Kortum [2004]. Indeed,
for such an economy the probability of exit for an incumbent product line is equal to the probability that
a new good enters the sub-sector in the next period, and that this new good is assigned a higher TFP
level. In turn, this probability is determined by the entry rates, and the frequency of product innovations
done by incumbents. Similarly, the exit rates in our setting could be conditional on the values of relative
productivity and capital, as in the models with active selection margin. In general, our setting can match
any pattern of exit rates across markets and producer types. Given an appropriately chosen specification for
exit probability distribution, many of our results would continue to hold in the settings with endogenous
selection.

[Discussion: Uzawa and Capital Growth] Uzawa [1961] showed that, in the frameworks with
aggregate production and investment, the balanced growth under non-CD production is only possible if
technological progress is labor-augmenting. This result rests on the fact that aggregate capital stock has to
20E.g., see Weiss [2019].
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grow at the same rate as the aggregate output and consumption for the economy’s budget constraint to
hold. In contrast to the classical setting of Uzawa [1961], we distinguish between the nominal value of the
investment, equal to wzKθ for a firm θ, and the production value of the investment, proportional to zKθ . The
nominal value of the aggregate investment grows at the same rate as the aggregate output, but the prices of
capital goods determine the real value of capital stock and its growth. In other words, in our framework,
the interest rate is the price of borrowed funds, not capital goods. In its spirit, our solution to the Uzawa
problem is similar to the method suggested by Grossman et al. [2017], who assume that prices of capital
goods trend downwards due to the ”investment-specific” technological progress.

C. A More General Model

In a more general version of a model, we allow consumers to have Kimball [1995] preferences across sectors
and products. The production function has a general structure with returns to scale parameter (sum of
labor and capital elasticities) equal to ξ.

C.1. Setting

[Consumer Preferences] Preferences of consumers across final good varieties are given by a Kimball
[1995] aggregator ΥV :

1 =

∫
ν∈Vt

ΥV

(
Yνt
Yt

(|Vt|)ηV
)
fνtdν. (80)

Here Yνt is the consumption index for goods that belong to variety ν, and |Vt| is the total mass of varieties
available to consumers at time t; fνt denotes the density of variety type ν among all sectors at time t.

Similarly, the variety-level output is a Kimball [1995] aggregate of outputs produced by individual
firms:

1 =
∑
γ∈Γν

ΥΓ

(
ytγ
Yνt

(|Γν |)ηΓ
)
ftγ
fνt

. (81)

ftγ denotes the density of product type γ among all products in Γt. Functions ΥV and ΥΓ are smooth,
increasing and concave. We also assume that Υȷ (0) = 0 and limy→0+ Υȷ (y) = ∞ for ȷ ∈ {V,Γ}.
Parameter ηV regulates the strength of the love-of-variety effects on aggregate output. By analogy with
CES preferences, we would typically expect ηV to be above 1.

The specification of Kimball preferences in Equation 80 preserves the model’s tractability and ensures
the existence of the balanced growth path (henceforth abbreviated as ”BGP”) under non-zero growth in the
number of varieties |Vt|. Importantly, we can evaluate the importance of productivity growth within firms
and the variety mass expansion for social welfare using this setup. In most endogenous growth settings, the
aggregate output growth is driven either by increases in firm productivities or the expansion of the product
variety mass21. We want to capture both channels within our framework, and the preference specification
21In most models of Schumpeterian growth, starting with Aghion and Howitt [1992], the growth of output is based entirely on the
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Table 14: Steady State Growth Rates, General Model

Variable Growth Rate Value

1. Real Variables

Mass of Producers, Mt gL − gE

Mass of Final Good Varieties, Vt gL − gE

Mass of Products, Γt gL − gE

Product-Level Employment and Capital, ltγ and k̃tγ gE

Product-Level Output, ytγ gA + ξgE

Aggregate Output, Yt gA + ηVgL + (ξ − ηV) gE

2. Prices

Wages, wt −gE
Firm-Level Prices, pt −gA − ξgE

CPI, Pt −gA + (1− ηV) g
L + (ηV − ξ − 1) gE

Notes: In the expressions listed in this table, ξ corresponds to the returns-to-scale parameter of firms’ production
function, and ηV – to the love-of-variety parameter in consumer preferences.

in Equations 80 and 81 allows us to do this.

[Production] For each product γ ∈ Γt, the production function maps productivity, labor and capital
stock to physical output:

ytγ = aγAtg (kγKt, ltγ) = At (Kt)
ξ aγ (kγ)

ξ g̃

(
ltγ
kγKt

)
, (82)

where aγ is the relative good-specific productivity, and kγKt and ltγ represent the amounts of capital and
labor used in production at time t. Function g (·) is homogeneous of degree ξ. We also assume that the
re-scaled production function g̃ (·) is smooth and satisfies the Inada conditions.

C.2. Analogues of Main Results

The growth rates for the general version of the model are shown in Table 14.

The first-best allocation can be characterized as follows:

Proposition .1. [First Best]The allocations of production labor and investment that implement first best

within-product productivity growth, while in Judd [1985] and Romer [1990] the output growth is driven by an increase in the
number of varieties.
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solve the following system of equations:

FOClγ : λγω
L
γ = ΛY λlγηV ,

FOCzθ : λZθ d log zθ + ΛZEλZ
Θ

[
d logΨM]+ ΛY Eλl

Γ

[
d logΨΓ

]
=

ΛF 1

ηV
dgA +

EλΓ

[
ωK
γ

]
ηV

d logK+

+ EΨV
[
d logΨV]+ δ

ηV

(
EλΥ

ν

[
d logΨV]− EΨV

[
d logΨV]) ,

(83)

where λZθ is the share of investment type zθ in all investment labor, and, similarly, λlγ is the share of labor
employed in production of good γ in all production labor. λΥν

22 is the weight of sector ν in the Kimball
aggregator.

This Proposition is overall similar to Proposition 4.3 in the main text. The main difference is that under
Kimball demand the sectoral reallocation effects are proportional to the demand index. Also, labor and
capital elasticities are product-specific, and thus the effect of aggregate capital stock is proportional to the
sales-share-weighted output elasticity with respect to capital.

The FOCs that determine the second-best allocation have the following form:

Proposition .2. [Second Best, General Model] The second-best markup levels solve the following system
of equations:

FOCµΓ : ΛY Eλl
Γ

[(
λγ
λlγ
ωL
γ − ΛY ηV

)
d log lγ

]
+

+ ΛZηVEλ̄Z
Θ

[(
1−

(
λZΘ
)−1

ΨZ
θ

)
d log zθ

]
= 0.

(85)

ΨZ
θ denotes the social return to investment, as in the less general version of the model.

Again, this Proposition is basically identical to the corresponding Proposition in the main text.

The main difference between this general version of the model, and the CD-CES version is in propagation
of shocks. The propagation equations for the general version of the model are described by the following
proposition:

Proposition .3. [Propagation Equations: Second Best, General Model] At the second best optimum,
the allocation function differentials d log lγ and d log zθ (ι) solve the system of differential equations described
below, for all possible values of d log ζθ . Let ΣΨE

ΓSΓ
denote the operator that computes the deviation of the

22Formally, we have

λΥ
ν ∝ ΥV

(
Yν

Y
(|V|)ηV

)
fν . (84)
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function value from its ΨE
ΓSΓ-weighted average, then(

IdΓ − ΣΨE
ΓSΓ

ΦY ωL
γ

)
d log lγ = ΦLZd log zΘ+

−
(
ζγ − ΣΨE

ΓSΓ

) (
ζγ − Id

)−1 d log ζγ ,

(IdΘI − ΦZZ) d log zΘ =EΨZOwn
Γ SΓ

[
ζγ

ζγ − 1
d log ζγ

]
+ EΨZOwn

Γ SΓ
[d log lγ ] .

(86)

In these equations, ΦY is the Hessian operator for the aggregate output with respect to the product outputs yΓ,
ΨE

Γ and ΨZOwn
Γ are the maps of operators ΨE and ΨZOwn on the product space, and the operators ΦLZ and

ΦZZ are defined as follows:

ΦLZ =− ΣΨE
ΓSΓ

ΦY ωL
γ

d logK
d log zΘ

− 1ΓEΨESΘ

[
d logΨE

d log zΘ

]
+ΣΨE

ΓSΓ
εν

(
EλΥ

V

[
d logΨV

d log zΘ

]
− EΨV

[
d logΨV

d log zΘ

])
,

ΦZZ = EΨZOwnSΘ

[
d logΨZOwn

d log zΘ

]
.

(87)

The operator ΦLZ in Equation 47 describes the feedback loop between changes in investment and
changes in production employment under the markup shocks. Changes in investment affect production
labor allocation via three channels. First, investment rates affect the aggregate capital stock. Since we have
assumed that capital and labor act as complements in production, higher (capital) investment should lead
to the reallocation of employment from labor-intensive towards capital-intensive products. Note that the
product operator ΦY ωL

γ measures the elasticity of product sales shares with respect to aggregate capital,
and thus the effect of d logK on employment is proportional to the deviation the sales share elasticity
with respect to capital from its weighted average EΨE

ΓSΓ

[
ΦY ωL

γ

]
. The term EΨE

ΓSΓ

[
ΦY ωL

γ

]
represents

the positive effect of differential d logK on wages: higher stocks of fixed assets incentivize producers to
employ more workers in the short run, since labor and capital act as complements. The term the sign of
this term is ambiguous since higher levels of incumbents’ investment could both increase and decrease
the expected value of a firm for entrants, conditional on surplus levels. The last term in the expression for
ΦLZ corresponds to sectoral composition effects that affect the product-level employment via the changes
aggregate output Y . This term is proportional to the deviation of the pseudo-demand elasticity of sector ν’s
output from the weighted average of pseudo-demand elasticities EΨE

ΓSΓ
[εν ]. The weighted average term

again represents the sectoral composition effect for wages. The sign of the term ΦLZd log zΘ on d log lΓ is
ambiguous since all the effects of investment on production employment can be classified as ”composition
effects.” Changes in zΘ rarely if never lead to uniform changes in lΓ, rather investment affects the relative
employment levels across the sector and product types.
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D. Generalized Oligopolistic Competition

As an alternative to marginal cost pricing setting, we consider a setup in which firms set prices and outputs
strategically, by engaging in a game of generalized oligopolistic competition. In this setting, the amount
of physical output that a firm manages to sell is a function of firm’s own action, and the actions of its
competitors:

Assumption 5. [Generalized Oligopolistic Competition] In each period, firms set prices of their goods
and the corresponding output levels by optimizing over actions (χγt)γ∈Γθ

. Firms take the actions of their
competitors as given. The mapping between product output yγt and the actions of firms that own competing
products (γ′ ∈ Γν) is as follows:

yγt = ȳγχγt ·

 ∏
γ′∈Γν ,γ′ ̸=γ

(
χγ′t

)ςγ′ . (88)

Parameter ςγ′ regulates the sensitivity of sold output with respect to the actions of firm’s competitor
who owns good γ′; ȳγ is a re-normalizing constant. Importantly, the equation above does not represent
either a technological constraint on firm output or the demand constraint. Rather, it describes producers’
perception of the behavior of their competitors23. Thus, it plays the same role in the determination of a
short-run equilibrium as the Bertrand assumption that states that firms optimize over prices, or Cournot
assumption on that firms choose quantities. Under generalized oligopolistic competition, the heterogeneity
in ”market power” is generated by the differences in modes of competition, i.e., payment functions and
action spaces that firms take as given when they interact with their competitors.

The industry structure outlined above is sufficiently flexible to allow us to take comparative statics
with respect to firm markups and evaluate welfare losses due to market power. For any strictly positive
vector of markup values µ̄ we can find vectors of parameters

(
ςγ′
)
γ′∈Γν

, such that µ̄ will be generated in a
decentralized equilibrium of our model. One corollary of this statement is that both Cournot and Bertrand
markup distributions can be replicated in our setting provided that the values of elasticities ς are chosen
appropriately24. The same holds for the socially optimal markup distribution, conditional on that all markup
values are above one.

[Optimization Under Generalized Oligopoly] Under the generalized oligopolistic competition, the
producer optimization is more involved. To note, in our setting the set of firms that own more than one
product within the same variety market is zero mass, and thus it is w.l.o.g. to consider optimization for
23The industry structure that we consider here is to some extent similar to the conjectural variation model of Bowley [1924], as it

generates the same patterns of firm behavior and the same range of equilibrium markup and sales share distributions. However,
we would like to emphasize that the solution concept that we use is Nash equilibrium instead of conjectural equilibrium, and
thus our setting is immune to some criticisms that concern the nature of the conjectural variations.

24For example, the case in which ςγ′ = 0 and ȳγ′ = 1, ∀γ′ ∈ Γν moves us back to the setting with Cournot competition.
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each product separately. Then, a producer that owns product γ in market ν solves the following:

max
χγ

Sγt = pγtyγt − wtlγt,

s.t. yγ̂t = ȳγχγ̂t ·

 ∏
γ′∈Γν ,γ′ ̸=γ

(
χγ′t

)ςγ′ , ∀γ̂ ∈ Γν ,

yγt = ãγtg
(
lγt, k̃γt

)
,

|Γt|pγt = PtYtδtδνtΥ
′
V

(
Yνt
Yt

|Vt|ηV
)
Υ′

Γ

(
yγt
Yνt

(|Γν |)ηΓ
)

|Vt|ηV
Yt

(|Γν |)ηΓ .

(89)

[Flexibility and Scope] The exogenous variation in producer ”market power” that is necessary for
the comparative statics can be generated by the shocks to Cobb-Douglas elasticities ςγ . Unlike the standard
frameworks that are built on oligopoly or monopolistic competition, this variation in markups does not
require us to change either consumer preferences or production constraints that the firms face. Thus, we
can separate the differences in welfare that are generated by changes in strategic interactions between
producers from the effects of other shocks. This setup also enables us to evaluate and interpret the first-order
losses from sub-optimal producer market power – such an exercise is feasible in particular because we know
that, as long as the ”optimal” distribution of market power prescribes positive values to all product-level
markups, the ”optimal” allocation is generated in the equilibrium by some combination of the parameter
values.

One drawback of this setting is that the values of higher-order moments of the demand functions
generated by such an industry structure are fully determined by the same set of parameters as markups,
and thus, e.g., it is not possible for us to match both Bertrand markups and Bertrand pass-through rates.
We can further augment equation 88 and add more parameters to it if we want to match both markup
and pass-through distributions. In the benchmark setting, we use the Cobb-Douglas aggregation for the
producer actions for the sake of simplicity.

[Discussion: Other Industry Structures] In our setting, firms’ actions affect producer sales shares
and profits via influencing the quantities of products sold. As an alternative, we could have assumed that
instead of quantities firm’s actions affect prices of goods. E.g., by analogy with equation 88, we could
assume that product prices are set to

pγt = p̄γχγt ·

 ∏
γ′∈Γν

(
χγ′
)ςp

γ′t

 , (90)

where χγt is the action of a firm that sells product γ at time t, as before. Similarly to the game in which
firm actions influence quantities, the setting that is build on price-based competition can generate any
positive markup distribution. In particular, there will sets of parameters that implement Cournot and
Bertrand allocation, as well as the socially optimal distribution of markups. Under the benchmark values of
parameters ςγ′ = 0 and ȳγ′ = 1, ∀γ′ ∈ Γν , the game based on equation 90 defaults to Bertrand oligopoly.
Overall, the game specification with the price-based competition will have the same properties as the game
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based on equation 88 – and we chose quantity-based competition primarily because it is marginally more
convenient under the Kimball setup.

There are a couple of other industry structure specifications that the reader might find appealing. First,
by analogy with Cournot and Bertrand competition models, we could assume that, instead of keeping either
quantities or prices constant, producers aim to keep constant the value of sine function ς (·, ·) that takes
both their output and their price as arguments. The action of the producer θ is such a setting would be
defined as

χγt = ς̂ (pγt, yγt) . (91)

Although this specification is simple and appealing, it generically does not generate the socially optimal
distribution of markups and product-level outputs. Thus, it is not well suited for the welfare analysis
exercises that we implement in later sections of this paper.

Another option would be to consider an analogue of Equation 88 that actually incorporates both
Cournot and Bertrand as special cases. An example of such industry structure is as follows:

ℵ ∈ [0, 1], (yγt)
ℵ (pγt)

1−ℵ = ȳγχγt ·

 ∏
γ′∈Γν ,γ′ ̸=γ

(
χγ′t

)ςγ′ . (92)

Unlike Equation 88, this industry structure can match both Cournot and Bertrand markups and pass-through
rates for specific values of ℵ. Since it includes both price-based and quantity-based industry structures
(in Equations 88 and 90) as special cases, it is also flexible enough to generate any positive markup values.
Once again, we stick to Cournot-like specification for the sake of simplicity.

[(Marginal) Markup Determination] In the oligopolistic competition setting that we consider,
markup values are determined by the firms’ actions. The markup values are characterized as follows. Let
εγ denote the elasticity of function Υ′

Γ, evaluated at the equilibrium value of relative output yγ/Yν . We
refer to εγ as the quasi-elasticity of demand, because it is precisely equal to the elasticity of product’s price
with respect to its quantity under monopolistic competition. By analogy, εν denotes the quasi-elasticity of
demand on sectoral level. Then, for a non-monopolistic variety market ν, we have:

(µγ)
−1 = (1 + εγ)︸ ︷︷ ︸

Own Output Effect

− Covλνγ′

(
ςγ , εγ′

)︸ ︷︷ ︸
Reallocation within Variety Sub-Sector

+

+ Eλνγ′ [ςγ ] (εν − εγ)︸ ︷︷ ︸
Variety-level Output Effect

.
(93)

Here λνγ′ is the market share of a single product of type γ′25, and Covλνγ′

(
ςγ , εγ′

)
is the λνγ′-weighted

covariance of industry structure parameters ςγ and quasi-elasticities of demand εγ′ , evaluated within sector
ν.
25We will use λ to denote sales or cost shares of individual products and firms, and λ̄ to denote the type-level shares at product,

variety and firm level. The following identities hold for λ and λ̄: fγ |Γ|λγ = λ̄γ , fγ |V|λν = λ̄ν , and similarly, within variety
sectors we have fνγ |Γν |λνγ = λ̄νγ .
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Equation 93 tells us that the sales elasticity with respect to firm’s action χγ is comprised of three terms.
First, χγ directly alters the quantity of good γ that is sold to consumers – this effect is summarized by
the term (1 + εγ). As was implied above, the first term (1 + εγ) is precisely equal to product markup
under monopolistic competition, and thus, the remaining two terms summarize the effect of oligopolistic
competition on firm market power. The second term represents reallocation of sales and outputs within
the variety sub-sector. The sign of the covariance term depends on the output of product γ relative to the
variety-level output Yν : for a firm whose output is above average, the absolute values of the quasi-elasticities
are positively correlated with output elasticities ςγ , thus, the covariance term overall should have a positive
sign. The opposite should be true for goods with lower outputs. Finally, firm’s action χγ also affects
producer’s output elasticity by altering the sectoral output, this effect is summarized by a third term. If
varieties of products are (at least locally) less substitutable than good types within varieties, it should be
the case that |εν | ≥ |εγ | and the sign of the term should be proportional to −Eλνγ′ [ςγ ]. Importantly, we
would expect the sum of the oligopoly terms to be negative for most firms in the market: producer’s should
be able to benefit from their ability to impact the variety-level output and outputs of their competitors, and
on average they should charge higher markups relative to the setting with monopolistic competition.

For the monopolistic sectors, note that, if a variety market only contains one firm, all the terms
associated with the effects of firm’s action χγ on outputs of other firms are reset to zero, and thus the
inverse markup is equal to (1 + εν).

[Discussion: Generalized Oligopoly Markups Under CES] To provide more intuition for Equation
93, here we also derive the expressions for markups under CES demand. Suppose σΓ is the elasticity of
substitution within varieties, and σV is the elasticity across varieties, then

(
µCES
γ

)−1
=

(
1− 1

σΓ

)
+ Eλνγ′ [ςγ ]

(
1

σΓ
− 1

σV

)
. (94)

Under CES demand the within-variety reallocation effects summarized by the covariance term in Equation
93 are always zero. Similarly to the discussion above, if σV < σV , and, as long as Eλνγ′ [ςγ ] > 0, the
oligopoly markups are higher than the markups under monopolistic competition.

Consistently with the discussion in Section 3, if we reset, ς̄γ to zero, the equation above is reduced to
the standard expression for CES-Cournot markups, as in Atkeson and Burstein [2008]:

(
µCES, Cournot
γ

)−1
=

(
1− 1

σΓ

)
+ λνγ

(
1

σΓ
− 1

σV

)
. (95)

We can also compute the values of ς̄γ that generate Bertrand markups: given the equilibrium Bertrand sales
shares λBertrand

νγ , we have:

ς̄Bertrand
γ = 1− σΓ

σΓ

(
1− λCES, Bertrand

γ

)
+ λCES, Bertrand

γ σV
< 0,

(
µCES, Bertrand
γ

)−1
=

(
1− 1

σΓ

)
+ Eλνγ′

[
ςBertrand
γ

]( 1

σΓ
− 1

σV

)
.

(96)
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We can note that the values of cross-elasticities ςγγ′ are negative for Bertrand competition, conditional on
σΓ − σV > 0: lowering the price of good γ allows the owner of this good to sell more, and in addition the
competitors of good γ are forced to reduce their outputs.

E. BGP Calculations

Note: All the proofs and derivations in this section are presented for the case of a general model with
Kimball demand and general production structure.

[Firms: Short-term Optimization]In the short run, firms choose employment levels for each of their
products by maximizing their variable surpluses, subject to the production, demand and industry structure
constraints. Under the marginal cost pricing with fixed markups, the short run optimization is reduced to
Equation 13, provided that the product prices and outputs are determined by consumer inverse demand
functions:

|Γt|pγt = PtYtδtδνtΥ
′
V

(
Yνt
Yt

|Vt|ηV
)
Υ′

Γ

(
yγt
Yνt

(|Γν |)ηΓ
)

|Vt|ηV
Yt

(|Γν |)ηΓ . (97)

δt and δνt are the demand indices for the aggregate output (δt) and variety-level output (δνt), defined as
follows

1

δt
=

∫
ν∈Vt

Υ′
V

(
Yνt
Yt

|Vt|ηV
)
Yνt
Yt

|Vt|ηVfνtdν. (98)

1

δνt
=
∑
γ∈Γν

Υ′
Γ

(
yγt
Yνt

(|Γν |)ηΓ
)
yγt
Yνt

(|Γν |)ηΓ fνγ . (99)

The aggregate demand index δt is proportional to the marginal utility of aggregate output Yt, and similarly,
the product λνtδνt tracks the marginal utility of sectoral output Yνt.

Dynamic Optimization We are solving for one-period growth rates, subject to constraints, and the
relative steady state allocation; capital and productivity levels are fixed, so d log aθ = 0, and d log kθ = 0.
The probability transition matrix notation: initial types are indexing the rows, and the future types are
indexing the columns. Throughout this section, we will omit time (t) subscripts to keep the notation concise.

We will use the following notation for the ”discount factors” in the Neumann series: let γ = exp (gE − gL) =

exp (−gM ), β = exp(−r), and ρ will denote the original discount rate for the consumers:

P = P
(
Z, {ζι (z(ι))}ι∈IA , gA, gK

)
. (100)

Ψ(r, Z, gA, gK) = Ψ = (I − βP)−1 , ΨM (gM , Z, gA, gK) = ΨM = (I − γP)−1 . (101)

ΩOwn
θ (κ) =

∂P
(
Z, {ζι (z(ι))}ι∈IA , gA, gK

)
∂ log zθ (κ)

, (102)
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ΩAll
θ (κ) =

∂P
(
Z, {ζι (z(ι))}ι∈I , gA, gK

)
∂ log zθ (κ)

+
∂P
(
Z, {ζι (z(ι))}ι∈I , gA, gK

)
∂ log ζι (Z)

Ωζκ
θ +

+
∂P
(
Z, {ζι (z(ι))}ι∈I , gA, gK

)
∂gA

dgA
d log zθ (κ)

,

(103)

ΦOwn
θ (κ, k) =

dΩOwn
θ (κ)

d log zθ (k)
. (104)

ΩOwn(κ) will denote the ”stacked” non-zero lines of the corresponding matrices. Operator ΩExt
θ (κ) is the

difference between ΩAll
θ (κ) and ΩOwn

θ (κ). Note that given these definitions the value function and the
equilibrium investment can be expressed as

wzθ (κ) = βΩOwn
θ (κ)V, V = Ψπ. (105)

Here π is the producer profits, equal to πθ = Sθ − wzθ , where S is the surplus received from production.

Consumer optimization
fγ
fν

=
1

|Γν |
. (106)

Thus, at the product type level,

λγ = δνδ

(
Υ′

V

(
Yν
Yt

(|Vt|)ηV
)
Yν
Yt

(|Vt|)ηV
)
·(

Υ′
Γ

(
yγ
Yν

)
yγ
Yν
fγ

)
.

(107)

λγ =
pγyγfγ
PY

. (108)

Also for a firm of type θ, we have
γ ∈ Γθν , λθν = λνγ . (109)

γ ∈ Γθν , λθν = λνγ = δνδ

(
Υ′

V

(
Yν
Y

(|V|)ηV
)
Yν
Y

(|V|)ηV−1

)
·(

Υ′
Γ

(
yγ
Yν

)
yγ
Yν

(|Γν |)−1

)
.

(110)

λθ =
∑
ν∈Vθ

λθν . (111)

Then, the sales at the variety-product level are equal to pνγyνγ = λγν (fνγ |Γν ||V|)−1.

Inter-Temporal Consumer Optimization At the steady state, we have the standard optimization
condition

FOCat : (1− ϑ)P Y
t+1

(
Yt
Lt

)−ϑ

= exp (r − ρ) (1− ϑ)P Y
t

(
Yt+1

Lt+1

)−ϑ

. (112)
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FOCat : P Y
t+1

(
Yt
Lt

)−ϑ

= exp (r − ρ)P Y
t

(
Yt+1

Lt+1

)−ϑ

. (113)

Note that the growth rate of nominal income is gM = gL − gE , and thus the growth rate of CPI is equal to
gL − gE − gY .

r − (gL − gE − gY ) = ρ+ ϑ (gY − gL) . (114)

Aggregate profit rate is defined as

πAgg =
π

Lw + π
. (115)

F. Proofs: Aggregate Growth Rates along BGP

From the type space identities it follows that the variety mass V grows at the same rate as the mass of
producers M.

For the growth rate of the nominal output, it holds:

Agg. GDP growth: gY + gP = ηVgM + (gA + ξgK) + gP = gp + gy + gM = gM , (116)

From price normalization, we have:
gp = −gy. (117)

gM (ηV − 1) = −gA − ξgK − gP (118)

The dynamics of CPI depends on the growth in the number of varieties and firm-level output (or firm-level
prices).

Static factor prices: for the constant endowment shares,

Static factor prices: gw = gM − gL = −gE . (119)

Also, from producer optimization, we have:

Firm-Level Prices: gp = gmc = gw + gL − gM − gy − gωL = −gy (120)

Let gA denote the productivity growth at firm level: Then, we have:

gy = gA + ξgK . (121)
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For profits, we have:

Profits and Surplus: Sνγt =

(
1−

ωL
νγt

µνγt

)
pνγtyνγt, ⇔ gS = 0. (122)

πνγt = Sνγt − LIw, ⇔ gπ = 0. (123)

From this it follows that the growth rate of overhead costs should be equal to the growth rate of entry costs.

Also, the definition of the value function for firms and free entry condition imply that the following
identity holds

gV = 0. (124)

Note that the fact that labor elasticities are constant means that the ratio of capital to labor at the firm level
should remain constant, and thus,

gK = gL − gM = gE . (125)

Note that this is capital per firm (or per product).

Thus, the real output growth rate can be expressed only in terms of the TFP growth

gY = ηVgM + (gA + ξgK) , (126)

gY = gA + ηVgL + (ξ − ηV) gE . (127)

G. Proofs: Allocative Efficiency, Welfare Elasticities and Welfare Decompositions

[Proposition 4.3: Proof] Let ∆1 denote the Lagrange multiplier on the aggregate demand constraint, ∆2ν

– the multiplier on the sectoral demand constraint for sector ν, and ∆3 – the multiplier on the labor market
clearing constraint. Here we consider the balanced growth paths, and the labor supply in the initial period
is normalized to 1.

[FOCs: Output Levels] :

FOCY : (Y )1−ϑ = ∆1
1

δ
, (128)

FOCYν : ∆1
δν
δ
λν = ∆2ν , (129)

FOCYν : (Y )1−ϑ δνλν = ∆2ν , (130)

[Labor] The FOCs yield the following conditions: relative levels of lY ,

FOCl or LY : (Y )1−ϑ λγω
L
γ = LY λlγ∆3. (131)
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(Y )(1−ϑ)

LY
Eλ

[
ωL
γ

]
= ∆3. (132)

∆3 = ∆1
1

δ

Eλ

[
ωL
γ

]
LY

. (133)

Relative allocation:
λγω

L
γ = λlγEλ

[
ωL
γ

]
. (134)

[Investment] FOC for zθ (ι)

FOCzθ(ι) : ∆3Λ
ZλZθ d log zθ = ΛF (1− ϑ)

1

1− exp−δ+(1−ϑ)gY
(Y )(1−ϑ) dgA+

+
(
1− exp−δ+(1−ϑ)gY

)−1
(1− ϑ) (Y )(1−ϑ) δEλΥ

ν

[
d logΨV]+

+
(
1− exp−δ+(1−ϑ)gY

)−1
(1− ϑ) (Y )(1−ϑ) (ηV − δ) d logV+

+
(
1− exp−δ+(1−ϑ)gY

)−1
(1− ϑ) (Y )(1−ϑ) EλΓ

[
ωK
γ

]
d logK+

−
(
1− exp−δ+(1−ϑ)gY

)−1
(1− ϑ) (Y )(1−ϑ) ηVΛ

ZEλZ
Θ

[
d logΨΘ

]
+

−
(
1− exp−δ+(1−ϑ)gY

)−1
(1− ϑ) (Y )(1−ϑ) ηVΛ

Y Eλl
Γ

[
d logΨΓ

]
;

(135)

Re-normalizing:

FOCzθ(ι) : ΛZλZθ (ι) d log zθ (ι) = ΛF 1

ηV
dgA+

+
δ

ηV
EλΥ

ν

[
d logΨV]+ ηV − δ

ηV
E
[
d logΨV]+ EλΓ

[
ωK
γ

]
ηV

d logK+

− ΛZEλZ
Θ

[
d logΨΘ

]
− ΛY Eλl

Γ

[
d logΨΓ

]
;

(136)

d log E = −
∑
ι∈I

EfΘ

[
ΦM (ι) d log zΘ (ι)

]
. (137)

d log fΘ =
∑
ι∈I

ΦM (ι) d log zΘ (ι)− EfΘ

[
ΦM (ι) d log zΘ (ι)

]
. (138)

d logK = −
∑
ι∈I

EkΓ◦PΓ
E

[
ΩΓ
E (ι) d log zΘ (ι)

]
. (139)

dgA = −
∑
ι∈I

EaΓ◦PΓ
E

[
ΩΓ
E (ι) d log zΘ (ι)

]
. (140)
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[Mass of Producers]The FOC with respect to the mass of producers M:

FOCM : ∆2
ηV
δ

= −∆5. (141)

ηV =
Eλ

[
ωL
νγ

]
LY

. (142)

[Capital Intensity] We can check that the solution for social planner’s problem generates a finite K .
In the limit K → ∞, we have: (since all the other terms contain elasticities and converse to zero)

FOCzθ(κ),K→∞ : 0 = ηVL
ZλZθ (κ) . (143)

This implies that the investment labor should be equal to zero (assuming that the limit of δ is above zero).
Zero investment under K → ∞ would lead to a decline in capital stock per firm, which is inconsistent
with K → ∞.

On the other hand, we know that whenever K → 0, the aggregate output also will approach zero. The
social planner can do better by allocating the non-zero share of labor to capital investment, and preserving
non-zero capital stock. Thus, K → 0 does not generate a valid equilibrium. Formally, we know that the
term Eλνγ

[
ωK
νγΩ

Z
K

]
goes to infinity as K approaches zero (ωK

νγ is always between 0 and ξ for all varieties,
but ΩZ

K is proportional to Z/K , which grows large as K → 0). All other terms are bounded.

FOCzθ(κ),K→0 : 0 = Eλνγ

[
ωK
νγΩ

Z
K

]
. (144)

[Proposition 4.] Log-linearizing the second best constraints, we get: here note that the operators ΨE

and ΨZOwn (ι) only depend on investment and exogenously fixed parameters

zΘ (ι) = ΨZOwn (ι)
SΘ
w
,

|Γ|
|Γ|

1

fγ
λ̄γωL = µγlγw,

w =
1

LE
ΨESΘ.

(145)

Note that these equations imply that given the price normalization that we use, the per-firm allocation
functions lΓ and zΘ are independent of of the mass of producers (only the per-firm surplus levels matter).
Let us start with the investment equation. We have:

d log zΘ (ι) =
∑
ι̃∈I

EΨZOwn(ι)SΘ

[
d logΨZOwn (ι)

d log zΘ (ι̃)

]
d log zΘ (ι̃) + EΨZOwn(ι)SΘ

[d logSθ/w] . (146)
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From here, we can already get: stacking the FOCs for investment,

Id1ι=ι̃ − ΦZZ (ι, ι̃) = Id1ι=ι̃ − EΨZOwn(ι)SΘ

[
d logΨZOwn (ι)

d log zΘ (ι̃)

]
. (147)

For the surplus differentials, we have:

d logSγ − d logw = d log lγ +
ζγ

ζγ − 1
(d logµγ − σΓ (d log lγ − d logK)) . (148)

d logSθ − d logw = ESγ ,γ∈Γθ
[d log lγ ] +

ζθ
ζθ − 1

Eλγ ,γ∈Γθ
[d log ζγ ] . (149)

Note that here d log ζ solves:

d log ζγ = d logµγ − σΓd log lγ + σΓd logK. (150)

We also set
d log ζθ = Eλγ ,γ∈Γθ

[d log ζγ ] . (151)

σθ is defined as a sales-share weighted average of product-level elasticities for firm θ:

σθ = Eλγ ,γ∈Γθ
[σγ ] , (152)

and ζθ is the firm-level price-cost margin defined as a ratio of sales to variable costs.
Simplifying, we get

(Id − ΦZZ) d log zΘ = EΨZOwnΓSΓ
[d logSγ/w] . (153)

EΨZOwn
Γ SΓ

[d logSγ/w] =

= EΨZOwn
Γ SΓ

[
ζγ

ζγ − 1
d log ζγ

]
+ EΨZOwn

Γ SΓ
[d log lγ ] .

(154)

Combining the terms:

(Id − ΦZZ) d log zΘ = EΨZOwn
Γ SΓ

[
ζγ

ζγ − 1
d log ζγ

]
+

+ EΨZOwn
Γ SΓ

[d log lγ ] .
(155)

Now, let us move to log-linearizing the production labor allocation. First, note that the labor costs can
be expressed as

lγw =
λ̄γ
ζγfγ

. (156)

Then, the entry condition takes the form:

w =
1

LE
ΨE

(
Id − (ζΓ)

−1
) λ̄Γ
fΓ
. (157)
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Thus, since product type shares are equal to the elasticities of output with respect to product outputs (at a
type level), we have

d log ζΓ + d log lΓ + 1Γd logw = ΦY ωL
γ (d log lΓ − 1Γd logK) +

∂ log λ̄Γ/fΓ
∂ log zΘ

. (158)

(
IdΓ − ΦY ωL

γ

)
(d log lγ − 1Γd logK) + 1Γd logw = −d logK

− d log ζγ − d log fγ +
∂ log λ̄Γ
∂ log zΘ

.
(159)

From the log-linearization of the investment equation, it follows that the elasticity of wages satisfies:
rescaling the weights

d logw =EΨESΓ

[
d logΨE

]
+ EΨE

ΓSΓ

[
1

ζγ − 1
d log ζγ

]
+

+EΨE
ΓSΓ

[
ΦY ωL

γ (d log lΓ − 1Γd logK) +
∂ log λ̄Γ/fΓ
∂ log zΘ

]
.

(160)

Elasticities of sales shares λ̄γ with respect to investment are as follows:

∂ log λν
∂ log Yν

= εν (1− λν)−
(
εν − Eλν′ [εν′ ]

)
. (161)

d log λ̄Γ/fγ
d log zΘ (ι)

= −Eλν [d log fV ] +
(
ΦY
V − εν (Id − λV)

)
EλΥ

V
[d log fV ] . (162)

d log λ̄Γ/fγ
d log zΘ (ι)

= −Eλν [d log fV ] +
(
εν − Eλν′ [εν′ ]

)
EλΥ

V
[d log fV ] . (163)

The part that does not cancel out:

d log λ̄Γ/fγ
d log zΘ (ι)

∝ ενEλΥ
V
[d log fV ] ∝ εν

(
EλΥ

V

[
d logΨV]− EΨV

[
d logΨV]) . (164)

Assembling all the terms together,

(
IdΓ − ΦY ωL

)
d log lγ + 1ΓEΨE

ΓSΓ

[
ΦY ωLd log lγ

]
=
(
1ΓEΨE

ΓSΓ

[
ΦY ωL

]
− ΦY ωL

)
d logK

− d log ζγ − EΨE
ΓSΓ

[
1

ζγ − 1
d log ζγ

]
− EΨESΘ

[
d logΨE

]
+
(
εν − EΨE

ΓSΓ
[εν ]
)(

EλΥ
V

[
d logΨV]− EΨV

[
d logΨV]) .

(165)

Under the CD-CES specification, several terms drop out from the labor equation:

73



74

(
IdΓ − ΦY ωL

γ

)
d log lγ + 1ΓEΨE

ΓSΓ

[
ΦY ωL

γ d log lγ
]
= −d log ζγ

− EΨE
ΓSΓ

[
1

ζγ − 1
d log ζγ

]
− EΨESΘ

[
d logΨE

]
.

(166)

Notably, the elasticities of aggregate variables gA and K can also be expressed in terms of the elasticities.
From equations 25 and 26, it follows that the elasticities of gA and K are proportional to the weighted
expectations of elasticities of the entry type distribution PΓ

E :

d logK = −EkΓPΓ
E

[
d logPΓ

E

]
. (167)

dgA
1− EΓĀE

1− EΓ
= −EΨΓ

[
d logΨΓ

] EΓ
(
ĀE

)
(1− EΓ)2

+

+exp−gA EΨΓ

[
aΓP∆A (d logP∆A + d logΨΓ

)]
.

(168)

To interpret the equation that describes the elasticity of capital stock, note that the dynamics of incumbent
product and firm types is determined by the transition kernel P , and thus, the dynamics of aggregate
capital intensity is pinned down by the assumption on the dynamics of entrants’ fixed assets. Thus, the
effect of investment on capital stock and productivity growth is proportional to the effect of investment
on the distribution of relative productivity and relative capital among entrants: an economy with higher
capital intensity will prescribe lower relative fixed assets values to the entrants. As before, we can interpret
the equation for the elasticity of productivity growth rate via statistical TFP decompositions. The first
term in the right-hand side of Equation 168 is proportional to the elasticity of the entry rate, and thus, it
measures the change in productivity growth rate gA that is due to changes in entry. The second term in
the right-hand side of Equation 168 evaluates the changes in productivity growth that are due to either
composition effects in the distribution of incumbents (part of the term proportional to ∝ d logΨΓ) or
changes in the improvements of TFP within-products (part of the term proportional to ∝ d logP∆A).

H. Data and Estimation

H.1. Discussion: Markup Estimation

[Discussion: Proxy Functions] The equation above is based on the Olley and Pakes [1996] identification
strategy, in a sense that we rely on capital expenditures and R&D in order to pin down the variation in
productivity. In contrast to the original Olley and Pakes [1996] methodology, we use more variables to
proxy for TFP differences across producers, and thus, the scalar unobservability assumption is much weaker
in our setting: we allow for multiple additional sources of variation in firms’ investment, and these sources
include additional heterogeneity in firm types, as well as differences in the market environment that firms
face.

Depending on the assumptions that we are willing to make about the industry structure, the estimation
strategy proposed by Levinsohn and Petrin [2003] might or might not be feasible in our setting. If we assume
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that there is no firm-level variation in markups, the expenditures on variable inputs should depend only on
the capital stock, TFP and possibly, other fixed inputs. In such a case, the LP proxy strategy is valid. On the
other hand, if markups vary across firms, the markup differences drive firms’ decisions to hire workers and
purchase materials. This means that the scalar unobservability assumption is violated whenever expenditure
on variable inputs is used as a TFP proxy, and whenever firms have different beliefs about their competitors’
strategies. Thus, we opt for using the investment-based proxy function: not much is known about the
nature of competition in the US economy, and ultimately it is hard to make an argument for or against
homogeneity of producers’ beliefs about their competitors behavior. Importantly, investment-based proxy
function also allows us to estimate the industry structure parameters independently from the demand and
production functions.

[Discussion: Input Price Heterogeneity] In our estimation we implicitly assume that there is
no heterogeneity in the input prices, including labor wages, prices of materials and capital goods. This
restriction is imposed, first, because Compustat data does not allow us to reliably control for the input
price variation across firms, except for including controls for the location of firms’ plants and/or producers’
sectoral identities. Second, despite the assumption on homogeneity of input prices, there are still some
types of input price variation that can be accommodated by our empirical setting. So, whenever differences
in input prices are due to the variation in quality of purchased goods or efficiency of workers, and whenever
quality of inputs has an effect on the amount of output produced, or/and output’s quality, the prices of inputs
have to be included in the production function estimation, consistently with the arguments of Kugler and
Verhoogen [2012] and De Loecker et al. [2016]. Moreover, suppose that, instead of paying for hours worked,
or physical units of goods, firms buy ”efficiency units” of labor, materials and capital goods, where an
”efficiency unit” is a combination of the product’s quality, quantity, and possibly, its other features. In such
a setting, variation in the prices of physical units of goods does not necessarily imply differences in prices
of efficiency units, e.g. wages per worker might differ across firms, but only to the extent that workers with
different wages are supplying different amounts of ”efficiency units of labor” to their employers. Whenever
prices of input efficiency units are constant across firms, input expenditure is an acceptable measure of
input usage, regardless of the variation in wages or prices of physical units of materials and/or capital
goods. Furthermore, we could argue that, as long as producers use similar technologies and have access to
the same set of options in input markets, prices of efficiency units should not vary significantly.

[Discussion: Output Price Bias and Markup Estimation] One of the drawbacks of production
function estimation implemented on Compustat data is that, by nature of financial statements data, we
have to use sales as a primary measure of firms’ output. Bond et al. [2021] and De Ridder et al. [2021]
argue that output price variation, in the absence of proper controls, can render the marginal markup
estimates meaningless. In turn, the literature on markup and production function estimation has developed
a couple of methods that can be used to correct the elasticity estimates for the output price bias. In this
paragraph, we discuss drawbacks and advantages of these methods, as well as their applications in our
setting. Importantly, we view the production function estimation primarily as a source of parameter
estimates for our counterfactual exercises. Thus, our main task is to evaluate validity of different estimation
strategies under the assumptions of our theoretical model. In this discussion, we are not going to consider
the properties of the estimation procedures in other settings.

75



76

First, De Loecker et al. [2020] suggest using firm sales shares ”measured at various levels of aggregation
(two, three, and four digit)” to control for the difference between output and input prices. Specifically, the
authors suggest using this method in case of ACF-corrected LP estimation26. Following the literature on
proxy functions27, this estimation strategy is viable, i.e., sales shares can act as an exact control for the
price differentials, if the variable input usage is independent of the difference between output and input
prices, conditional on firm sales shares. Formally, the conditional independence requirement implies the
following: for any triple of values A, B and C , it has to be the case that

∆pγt = log pγt − ωL
νt logwt − ωK

νt log p
K
t ,

P
[
lγt = A

∣∣∣∆pγt = B, λ
3-digit
γt = C

]
= P

[
wlγt = A|λ3-digit

γt = C
]
.

(169)

Here we assume that the output-input price difference is proxied by the sales shares within a 3-digit industry
only, all our arguments go through even if we use sales shares at more than one level of aggregation. We
can then show that the above statement does not hold in our setting under the standard functional form
specifications. For a moment, let us also assume that the sales shares that are used as proxies do not contain
any measurement error terms. The price difference ∆pγt then can be expressed as follows:

log pγt =
µγtwtlγt

yγtωL
νt

,

∆pγt = logµγt +
(
1− ωL

νt

)
logwtlγt − ωK

νt log p
K
t

− log aγt − ωK
νt log kγt − logωL

νt.

(170)

This equation is derived from the De Loecker et al. [2020] formula for the marginal markup estimates, we
use it here because firm FOC that is used to derive the markup estimates also describes the optimal pricing
strategy of producers. Here we also have to note that under CES demand, the sales shares of producers
are an exact control for markups µγt. Thus, the probabilities in the condition 169 can be rewritten in a
following way: assuming that the Cobb-Douglas parameters are constant,
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)]
.

(171)
From the lines above, it is clear that the events A|B,C and A|C are generically distinct. The probability of
26Note that our proof of invalidity of De Loecker et al. [2020] price proxy strategy does not depend on the nature of TFP proxy

variable. Regardless of whether we use ACF-corrected Olley and Pakes [1996] or ACF-corrected Levinsohn and Petrin [2003]
methodology, it has to be the case that the output price variation is independent of variable input variation, conditional on the
price proxy. Unfortunately, the control function that is suggested by De Loecker et al. [2020] for the non-ACF-corrected Olley
and Pakes [1996] estimation is also invalid in our setting, primarily because the OP estimation only identifies the variable input
elasticity if there exists variation in variable input usage conditional on firm state variables and the TFP proxy. In turn, output
prices still depend on the value of variable input expenditures, and we cannot use only productivity proxies and sectoral demand
shifters to fully control for price differences.

27E.g., see Deaner [2018] – this definition of a perfect control is also in line with the estimation strategies of Olley and Pakes [1996]
and [Levinsohn and Petrin, 2003].
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the first event only depends on the distribution of sectoral output Yνt, and variable input price wt, while
the probability of a latter event is also affected by the distribution of firm-level capital stock log kγt and
TFP log aγt. In addition, assuming that the distributions of all the data variables are non-degenerate, if the
conditional independence restriction holds for the triplet of values A = Ã, B = B̃, and C = C̃ , it cannot
hold for the triplet A = Ã, B = B̃ +1, and C = C̃ . A similar argument applies if we assume that the price
proxy function is formed using the sales share data that contain measurement error(s). It also does not
matter whether or not we separately condition on productivity differences across firms.

Finally, let us briefly address the claim of De Loecker et al. [2016] and De Loecker et al. [2020] on that
variation in the output prices can sometimes absorb variation in the input prices. This argument relies on
the fact that regardless of the structure of demand, output prices are always higher for companies that face
higher input prices. However, the issue here is that prices are proportional to the marginal costs, and the
price differential term ∆pγt is equal to the difference between output prices and the CD price index that
takes into account both capital and labor. As the equations above illustrate, in our setting marginal costs of
production are not collinear with the Cobb-Douglas price index, and thus the price differential term will be
correlated with the variable input usage, as well as sectoral demand shifters and physical output. Output
prices absorb some part of the variation in input prices but not all of it, and this is not particularly helpful if
we want to obtain unbiased elasticity estimates.

Also, both De Loecker et al. [2020] and Bond et al. [2021] cite markup inflexibility as an argument
against including the assumptions on the demand system in the production function estimation. Our
theoretical results demonstrate that, provided that the industry in question is oligopolistic, assumptions
on the shape of the demand system do not restrict the set of possible markup distributions. Even CES
demand is compatible with an arbitrary markup distribution, as long as the producer beliefs about the
market environment are allowed to vary.

H.2. Markup Estimation Under Non-Linear Production and Demand

[Non-CD Production] The estimation process for the CES production functions is quite similar to the
CD-CES benchmark. The only difference is that, under CES, the expression for firm-level output is modified
to

log yνγt =
ξ

σ
log

(
ωK
νt +

(
1− ωK

νt

)( lγt
kγt

)σ)
+ ξνt log kγt

+ωSGA
νt log SGAγt + A

(
zKγt, z

A
γt, k̃γ , ν, Z

)
.

(172)

Thus, under CES production we need to estimate one additional parameter that regulates the substitution
between capital and inputs in the COGS bundle. We prefer to explicitly restrict the production function
to be CES rather than use a quadratic translog specification, because translog estimates often generate
negative estimates of output elasticities ωL

γt, at least for some share of firms in the data sample. Negative
variable input elasticities in turn imply negative marginal markup estimates, and neither negative markups
nor negative input elasticities are consistent with the short term producer optimization – and common
sense.
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[Non-CES Demand] We also implement the production function estimation exercise for the non-CES
demand system. To do so, we assume that the consumer preferences at the product level satisfy the following
restrictions:

log λνγt = τΓ log

((
yγt
Yνt

)σΓ

+ϖΓ

)
+ log δ̂νt, (173)

WheneverϖΓ = 0 or σΓ → ∞ and σΓτΓ → σ̄ <∞, the demand is reset back to CES, and the corresponding
elasticity of substitution in these cases would depend on the product of parameters σΓ and τΓ. The term
log δ̂νt in the equation above represents the demand index δνt, and by construction it functions as an
industry-year fixed effect. Importantly, λνγt is represented by monotone function of the relative product-
level output, and this function can be inverted in a closed form – this property is necessary for our estimation
strategy.

A useful property of this demand system is that it generates a schedule of markups that is concave

and increasing in relative output
Yγt
Yνt

. Moreover, unlike other types of Kimball preferences that are
used in the literature, the quasi-elasticities of demand in this case are always finite and bounded between

τΓσΓ

(
1 + ϖ

yσΓ

)−1
and τΓσΓ, where y is the lowest value of relative firm-level output in the sector. Formally,

we have

1 + εγt = τΓσΓ

(
1 +ϖΓ

(
Yνt
yγt

)σΓ
)−1

. (174)

Finite quasi-elasticities generate finite markup values for all producers, in all variety markets. This further
means that, unlike Klenow and Willis [2016] preferences, the physical output distribution and the sales
distribution under this demand specification do not have to have upper bounds. This property is certainly
desirable given that in the data both sales and output distributions have fat tails – in addition, the estimates
of marginal markup are relatively low even for the largest firms, and they usually do not approach infinity
as the firm output increases.

Under the demand specification described above, the sales function is non-linear in TFP error term eAγt.
This means that we cannot estimate Equation 175 as we did it under the CES demand. Instead, we invert
the sales function in equation 173 to obtain the expression for relative product output. The second step
of the modified ACF estimation is based on the following equation: assuming the production function is
Cobb-Douglas,
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(175)

Here λγt is the value of product sales share net of the measurement error, as before. This specification also
can be adapted for the case of CES production. To note, the terms δ̂νt can be identified up to a constant in
the first step of ACF estimation, together with the measurement error eγt.

78



79

Figure 6: Change in Average Markups from 1980

Figure 7: Elasticities of Substitution within 5-Digit Sectors

(a) EOS Values (b) Transformed EOS Values ((1− 1/σ))

H.3. Miscellaneous Graphs and Tables

Table 16: Sectors for Production Function and Demand Estimation

BEA KLEMS Sector NAICS 2-digit # Estimation Sector #

1. Farms 11 1. Agriculture

2. Forestry, fishing, and related activities 11 1. Agriculture

3. Oil and gas extraction 21 2. Natural Resources

4. Mining, except oil and gas 21 2. Natural Resources

5. Support activities for mining 21 2. Natural Resources

6. Utilities 22 3. Utilities and Construction

7. Construction 23 3. Utilities and Construction

8. Wood products 32 5. Manufacturing #2
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Table 16 – continued from previous page

BEA KLEMS Sector NAICS 2-digit Sector # Estimation Sector #

9. Nonmetallic mineral products 32 5. Manufacturing #2

10. Primary metals 33 6. Manufacturing #3

11. Fabricated metal products 33 6. Manufacturing #3

12. Machinery 33 6. Manufacturing #3

13. Computer and electronic products 33 6. Manufacturing #3

14. Electrical equipment 33 6. Manufacturing #3

15. Motor vehicles and parts 33 6. Manufacturing #3

16. Other transportation equipment 33 6. Manufacturing #3

17. Furniture and related products 33 6. Manufacturing #3

18. Miscellaneous manufacturing 33 6. Manufacturing #3

19. Food and beverage and tobacco products 31 4. Manufacturing #1

20. Textile mills and textile product mills 31 4. Manufacturing #1

21. Apparel and leather and allied products 31 4. Manufacturing #1

22. Paper products 32 5. Manufacturing #2

23. Printing and related support activities 32 5. Manufacturing #2

24. Petroleum and coal products 32 5. Manufacturing #2

25. Chemical products 32 5. Manufacturing #2

26. Plastics and rubber products 32 5. Manufacturing #2

27. Wholesale trade 42 7. Wholesale and Retail

28. Retail trade 44-45 7. Wholesale and Retail

29. Air transportation 48 8. Transportation

30. Rail transportation 48 8. Transportation

31. Water transportation 48 8. Transportation

32. Truck transportation 48 8. Transportation

33. Transit and ground passenger transportation 48 8. Transportation

34. Pipeline transportation 48 8. Transportation

35. Other transportation 48-49 8. Transportation

36. Warehousing and storage 49 8. Transportation

37. Publishing industries 51 9. Information

38. Motion picture and sound recording 51 9. Information

39. Broadcasting and telecommunications 51 9. Information

40. Information and data processing services 51 9. Information

41. Federal Reserve banks, credit intermediation, etc. 52 10. Finance

42. Securities, commodity contracts, and investments 52 10. Finance

43. Insurance carriers and related activities 52 10. Finance

44. Funds, trusts, and other financial vehicles 52 10. Finance
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Table 16 – continued from previous page

BEA KLEMS Sector NAICS 2-digit Sector # Estimation Sector #

45. Real estate 53 11. Real Estate

46. Rental and leasing services 53 11. Real Estate

47. Legal services 54 12. Professional and Technical Services

48. Computer systems design and related services 54 12. Professional and Technical Services

49. Miscellaneous professional services 54 12. Professional and Technical Services

50. Management of companies and enterprises 55 13. Administrative Services, etc.

51. Administrative and support services 56 13. Administrative Services, etc.

52. Waste management and remediation services 56 13. Administrative Services, etc.

53. Educational services 61 14. Miscallaneous Services #1

54. Ambulatory health care services 62 14. Miscallaneous Services #1

55. Hospitals, nursing and residential care facilities 62 14. Miscallaneous Services #1

56. Social assistance 62 14. Miscallaneous Services #1

57. Performing arts, spectator sports, museums, etc. 71 14. Miscallaneous Services #1

58. Amusements, gambling, and recreation industries 71 14. Miscallaneous Services #1

59. Accommodation 72 15. Miscallaneous Services #2

60. Food services and drinking places 72 15. Miscallaneous Services #2

61. Other services, except government 81 15. Miscallaneous Services #2
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Table 15: Aggregate Average Markup Values in 1980 and 2015

Year COGS as the only variable input COGS and SGA as variable inputs

1980 1.410 1.145
2015 1.793 1.249
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